Raf Cluckers

Directeur de Recherche du CNRS, University of Lille, France.

Associate professor (part time, 20%) at KU Leuven, Belgium.

ERC Consolidator Grant nr. 615722, MOTMELSUM, 2014 - 2019.

Address:
Université Lille 1
Laboratoire Painlevé, CNRS - UMR 8524
Cité Scientifique
59655 Villeneuve d'Ascq Cedex (France)
Bureau: 314, building: M2
E-mail: Raf.Cluckers"at"math.univ-lille1.fr
URL: http://rcluckers.perso.math.cnrs.fr/
TEL: +33 320434193 and +32 16327025

Secondary address:
KU Leuven, Departement Wiskunde, Section of Algebra
Celestijnenlaan 200B
3001 Leuven (Belgium)

Current and past Postdocs and PhD students:

Saskia Chambille, Kien H. Nguyen, Alexander Lemmens and Siegfried Van Hille: current PhD students. (Saskia and Siegfried are co-supervised by Wim Veys; Alexander is co-supervised by Wouter Castryck.)
Tristan Kuijpers and Eva Leenknegt: past PhD students.
Jorge Cely, Eva Leenknegt: current postdocs.
Pablo Cubides, Arne Smeets, Dmitry Sustretov and Wouter Castryck: past postdocs.

Published* papers and books:

  1. R. Cluckers, I. Halupczok: Definable sets up to definable bijections in Presburger groups, Trans. London Math. Soc. doi: 10.1112/tlm3.12011, arXiv:1706.02997 (2017).
  2. R. Cluckers, L. Lipshitz: Strictly Convergent Analytic Structures, J. Eur. Math. Soc. (JEMS), Vol. 19, no. 1, 107 -- 149 (2017).
  3. R. Cluckers, W. Veys: Bounds for p-adic exponential sums and log-canonical thresholds, Amer. J. Math., Vol. 138, No. 1, 61 -- 80 (2016).
  4. R. Cluckers, J. Gordon, I. Halupczok: Transfer principles for Bounds of motivic exponential functions, chapter in Families of automorphic forms and the trace formula, Müller, Werner, Shin, Sug Woo, Templier, Nicolas (Eds.) ISSN 2365-9564, Springer (2016).
  5. R. Cluckers, F. Martin: A definable, p-adic analogue of Kirszbraun's Theorem on extensions of Lipschitz maps, Journal of the Institute of Mathematics of Jussieu, doi:10.1017/S1474748015000390, 1--19, (2015), © Cambridge University Press 2015.
  6. R. Cluckers, G. Comte, F. Loeser: Non-archimedean Yomdin-Gromov parametrizations and points of bounded height, Forum of Mathematics, Pi, doi:10.1017/fmp.2015.4, Vol. 3, e5, 60 pages (2015).
  7. R. Cluckers, D. J. Miller: Uniform bounds on the decay of families of oscillatory integrals with a constructible amplitude function and a globally subanalytic phase function, Journal of Fourier Analysis and Applications, DOI 10.1007/s00041-015-9421-2 (2015).
  8. R. Cluckers, F. Loeser: Motivic integration in all residue field characteristics for Henselian discretely valued fields of characteristic zero, J. für die reine und angewandte Mathematik, DOI 10.1515/ crelle-2013-0025, Vol. 701, 1--31 (2015).
  9. S.-W. Shin, N. Templier: Sato-Tate theorem for families and low-lying zeros of automorphic L-functions, with appendix A by R. Kottwitz and Appendix B by R. Cluckers, J. Gordon and I. Halupczok, Inventiones Mathematicae, DOI 10.1007/s00222-015-0583-y (2015).
  10. R. Cluckers, J. Gordon, I. Halupczok: Motivic functions, integrability, and applications to harmonic analysis on p-adic groups., Electronic Research Announcements in Math. (ERA), Vol. 21, 137--152 (2014).
  11. R. Cluckers, J. Gordon, I. Halupczok: Integrability of oscillatory functions on local fields: transfer principles, Duke Math. J., Vol. 163, No. 8, 1549--1600 (2014).
  12. R. Cluckers, J. Gordon, I. Halupczok: Local integrability results in harmonic analysis on reductive groups in large positive characteristic, Ann. Sci. Ecole Norm. Sup., Vol. 47, No. 6, 1163--1195 (2014).
  13. R. Cluckers, F. Loeser, J. Nicaise: Chai's Conjecture and Fubini properties of dimensional motivic integration, Algebra and Number Theory, Vol. 7, No. 4, 893--915 (2013).
  14. R. Cluckers, J. Derakhshan, E. Leenknegt, A. Macintyre: Uniformly defining valuation rings in Henselian valued fields with finite or pseudo-finite residue fields, Annals of Pure and Applied Logic, Vol. 164, No. 12, 1236--1246 (2013).
  15. R. Cluckers, D. J. Miller: Lebesgue classes and preparation of real constructible functions, Journal of Functional Analysis (JFA), Vol. 264, No. 7, 1599--1642 (2013).
  16. R. Cluckers, I. Halupczok: Approximations and Lipschitz continuity in p-adic semi-algebraic and subanalytic geometry, Selecta Mathematica, doi: 10.1007/s00029-012-0088-0 (2012).
  17. R. Cluckers, G. Comte, F. Loeser Local metric properties and regular stratifications of p-adic definable sets Comment. Math. Helv., Vol. 87, No. 4, 963--1009 (2012).
  18. R. Cluckers, E. Leenknegt A version of p-adic minimality, J. Symbolic Logic, Vol. 77, No. 2, 621--630 (2012).
  19. R. Cluckers, I. Halupczok: Quantifier elimination in ordered abelian groups, Confluentes Mathematici, Vol. 3, No 4, 587--615 (2011), doi: 10.1142/S1793744211000473.
  20. R. Cluckers, Y. de Cornulier, N. Louvet, R. Tessera, A. Valette: The Howe-Moore property for real and p-adic groups, Math. Scand., Vol. 109, No. 2, 201--224 (2011) arXiv:1003.1484.
  21. R. Cluckers, F. Loeser: Motivic integration in mixed characteristic with bounded ramification: a summary, bookchapter in: "Motivic integration and its interactions with model theory and non-archimedean geometry, Volume 1", Cambridge University Press (2011) pdf here.
  22. R. Cluckers, J. Nicaise and J. Sebag (Editors): Motivic integration and its interactions with model theory and non-archimedean geometry, Volume 1, Cambridge University Press (2011).
  23. R. Cluckers, J. Nicaise and J. Sebag (Editors): Motivic integration and its interactions with model theory and non-archimedean geometry Volume 2, Cambridge University Press (2011).
  24. R. Cluckers, T. Hales, F. Loeser: Transfer Principle for the Fundamental Lemma, in ``On the Stabilization of the Trace Formula´´, edited by L. Clozel, M. Harris, J.-P. Labesse, B.-C. Ngô, International Press of Boston, ISBN: 978-1-57146-227-5, (2011).
  25. R. Cluckers, C. Cunningham, J. Gordon, L. Spice: On the computability of some positive-depth characters near the identity, Representation Theory, Vol. 15, 531--567 (2011).
  26. R. Cluckers: Analytic van der Corput Lemma for p-adic and F_q((t)) oscillatory integrals, singular Fourier transforms, and restriction theorems, Expositiones Mathematicae, Vol. 29, No. 4, 371--386 (2011), doi:10.1016/j.exmath.2011.06.004 (2011).
  27. R. Cluckers, D. J. Miller: Loci of integrability, zero loci, and stability under integration for constructible functions on Euclidean space with Lebesgue measure, Int. Math. Res. Not. (IMRN), doi: 10.1093/imrn/rnr133 (2011).
  28. R. Cluckers, L. Lipshitz: Fields with analytic structure, J. Eur. Math. Soc. (JEMS), Vol. 13, No. 4, 1147--1223 (2011) arXiv:0908.2376.
  29. R. Cluckers, D. J. Miller: Stability under integration of sums of products of real globally subanalytic functions and their logarithms, Duke Math. J., Vol. 156, No. 2, 311--348 (2011).
  30. R. Cluckers, G. Comte, F. Loeser: Lipschitz continuity properties for p-adic semi-algebraic and subanalytic functions, GAFA (Geometric and Functional Analysis), Vol. 20, No 1, 68--87 (2010).
  31. R. Cluckers, F. Loeser: Constructible exponential functions, motivic Fourier transform and transfer principle, Annals of Mathematics, Vol. 171, No. 2, 1011-–1065 (2010).
  32. R. Cluckers: Exponential sums: questions by Denef, Sperber, and Igusa, Trans. Amer. Math. Soc., Vol. 362, No. 7, 3745--3756 (2010).
  33. R. Cluckers, F. Loeser: Constructible motivic functions and motivic integration, Inventiones Mathematicae, Vol. 173, No. 1, 23--121 (2008).
  34. R. Cluckers, L. Lipshitz, Z. Robinson: Real closed fields with nonstandard and standard analytic structure, Journal of the London Mathematical Society, Vol. 78, No. 1, 198–212 (2008).
  35. R. Cluckers, E. Leenknegt: Rectilinearization of semi-algebraic p-adic sets and Denef's rationality of Poincaré series, Journal of Number Theory, Vol. 128, No. 7, 2185--2197 (2008).
  36. R. Cluckers, J. Denef: Orbital integrals for linear groups, Journal of the Institute of Mathematics of Jussieu, Vol. 7, No. 2, 269--289 (2008).
  37. R. Cluckers: An introduction to b-minimality, Conference Proceedings of LC2006, Nijmegen, math.LO/0610928 .
  38. R. Cluckers: Parameterized local zeta functions, Logic Colloquium 2004, 84--92, Lect. Notes Log., 29, Assoc. Symbol. Logic, Chicago, IL (2008).
  39. R. Cluckers: Igusa and Denef-Sperber conjectures on nondegenerate p-adic exponential sums, Duke Math. J., Vol. 141, No. 1, 205-216 (2008).
  40. R. Cluckers: The modulo p and p˛ cases of the Igusa Conjecture on exponential sums and the motivic oscillation index, Int. Math. Res. Not. (IMRN), (2008) Vol. 2008, article ID rnm118, 20 pages, doi:10.1093/imrn/rnm118.
  41. R. Cluckers, F. Loeser: b-minimality, Journal of Mathematical Logic, Vol. 7, No. 2, 195 - 227 (2007).
  42. R. Cluckers, A. Herremans: Computation of character sums and applications to prehomogeneous vector spaces. With an appendix "L-functions of prehomogeneous vector spaces" by Fumihiro Sato, Bull. Soc. Math. France, Vol. 135, No. 4, 475-494 (2007).
  43. R. Cluckers, M. Edmundo: Integration of positive constructible functions against Euler characteristic and dimension, J. Pure Appl. Algebra, 208, no. 2, 691 - 698 (2007).
  44. R. Cluckers, L. Lipshitz, Z. Robinson: Analytic cell decomposition and analytic motivic integration, Ann. Sci. École Norm. Sup., 39, no. 4, 535 - 568 (2006).
  45. R. Cluckers, F. Loeser: Fonctions constructibles exponentielles, transformation de Fourier motivique et principe de transfert, Comptes rendus de l'Académie des Sciences, 341, 741 - 746 (2005).
  46. R. Cluckers, F. Loeser: Ax-Kochen-Ersov Theorems for p-adic integrals and motivic integration, in Geometric methods in algebra and number theory, Y. Tschinkel and F. Bogomolov (Eds.), 2005, Proceedings of the Miami Conference 2003, math.AG/0410223.
  47. R. Cluckers: Multivariate Igusa theory: Decay rates of exponential sums, Int. Math. Res. Not. (IMRN), 76 (2004) 4093 - 4108.
  48. R. Cluckers, F. Loeser: Fonctions constructible et intégration motivique II, Comptes rendus de l'Académie des Sciences, 339, 487 - 492 (2004).
  49. R. Cluckers, F. Loeser: Fonctions constructible et intégration motivique I, Comptes rendus de l'Académie des Sciences, 339, 411 - 416 (2004).
  50. R. Cluckers: Grothendieck rings of Laurent series fields, J. Algebra, 272, 692 - 700 (2004).
  51. R. Cluckers: Analytic p-adic cell decomposition and integrals, Trans. Amer. Math. Soc., 356, no. 4, 1489 - 1499 (2004).
  52. R. Cluckers: Presburger sets and p-minimal fields, Journal of Symbolic Logic, 68, no. 1, 153 - 162 (2003).
  53. R. Cluckers: Model theory of valued fields, in Model theory and applications, Quaderni di matematica, Vol. 11, 2002 math.LO/0311433.
  54. R. Cluckers: Cell decomposition and p-adic integration, Thesis (locally) published in Leuven (2002) math.LO/0301023.
  55. R. Cluckers: Classification of semi-algebraic p-adic sets up to semi-algebraic bijection, Journal für die reine und angewandte Mathematik, 540, 105 - 114 (2001).
  56. R. Cluckers, D. Haskell: Grothendieck rings of Z -valued fields, Bulletin of Symbolic Logic, 7, no. 2, 262 - 269 (2001).
Preprints:
  1. R. Cluckers, I. Halupczok, F. Loeser, M. Raibaut, Distributions and wave front sets in the uniform non-archimedean setting , submitted, arXiv:1706.03003.
  2. R. Cluckers, J. Pila, A. Wilkie: Uniform parameterization of subanalytic sets and diophantine applications, submitted, arXiv:1605.05916.
  3. R. Cluckers, G. Comte, D. J. Miller, J.-P. Rolin, T. Servi: Integration of oscillatory and subanalytic functions, submitted, arxiv:1601.01850.
  4. R. Cluckers, J. Gordon, I. Halupczok: Uniform analysis on local fields and applications to orbital integrals, submitted, arxiv:1703.03381.
  5. R. Cluckers, I. Halupczok: Integration of functions of motivic exponential class, uniform in all non-archimedean local fields of characteristic zero, to appear in Journal de l'École polytechnique (JEP), arXiv:1510.08250.
  6. E. Hrushovski, B. Martin, S. Rideau: Definable equivalence relations and zeta functions of groups, With an appendix "Rationality results for p-adic subanalytic equivalence relations" by R. Cluckers, to appear in JEMS, arXiv:math/0701011.

Coming up soon:

  1. R. Cluckers, I. Halupczok, S. Rideau: Valued field minimality.
Organized Conferences and seminars:
  1. Model theory and applications Mons (Belgium), 16 - 19 January 2017, Scientific Committee.
  2. From 2016 on, Z. Chatzidakis and I organize the monthly seminar day GTM 'Geometry and model theory' at the ENS in Paris.
  3. On the 10th October 2016, a Special day on Motivic integration and non-archimedean geometry is held at the University of Lille, organized with with Pablo Cubides and Kien Nguyen.
  4. Together with David Bourqui, Johannes Nicaise and Julien Sebag, we organize a conference Schéma des arcs et singularités in Rennes, France, 21 - 25 November 2016.
  5. With E Baro and F. Point we organize the special session Model Theory and Applications of the Second joint Conference of the Belgian, Royal Spanish and Luxembourg Mathematical Societies, Logrońo, La Rioja, Spain, June 6 - 8 (2016).
  6. The workshop Model Theory in Geometry and Arithmetic, 12 - 16 May (2014), co-organized with J. Pila and T. Scanlon, and concluding the MSRI Spring 2014 semester program Model Theory, Arithmetic Geometry and Number Theory.
  7. Oberwolfach Seminar: Motivic Integration, Germany, 13 - 19 October 2013, co-organized with A. Chambert-Loir, F. Loeser, J. Nicaise.
  8. The conference Number Theory, Algebraic Geometry and Model Theory, in honor of Jan Denef, at the CIRM in Luminy, France, September 12 - 16 (2011), co-organized with J. Nicaise and W. Veys.
  9. The Workshop Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry May 12 - May 17, 2008, ICMS, Edinburgh (UK), co-organized with A. Macintyre, J. Nicaise, and J. Sebag

Thesis: I started my Ph.D. studies in 1999 in Leuven under supervision of Prof. Dr. J. Denef, finishing in 2002. All chapters of the thesis are published separately.

Curriculum Vitae: download my curriculum vitae and publication list. (Last update: January 2017)

Current projects:

One of my most ambitious projects is to solve Igusa's 1974 conjecture on exponential sums. The conjecture describes p-adic exponential sums, i.e., exponential sums modulo powers of p, uniform in p.

For a general overview on motivic integration, see the slides on motivic integration of the series of talks by F. Loeser at the 2005 Seattle algebraic geometry meeting.

Visits and honors:

During the spring term of 2014, I gave the Nachdiplom-Lectures at the ETH Zürich. I was a MSRI Research during part of the spring term 2014, Berkeley, California. I obtained an ERC Consolidator Grant with title "Motivic Mellin transforms and exponential sums through non-archimedean geometry" with ERC Grant Agreement nr. 615722 and acronym MOTMELSUM, 2014 - 2019. The CNRS of France awarded me with a "prime d'excellence" in 2011. Students of the KU Leuven nominated me for best teaching assistant in math. I was a Marie Curie Fellow at the ENS in Paris for two years from 2003 on. Further, outside of mathematics, I won a first prize on the Belgian, national contest "Axion Classics" for classical piano for adolescents in 1994.

Personal items:

Look at my favorite pianist Andrew Hill's website. Other pianists I admire are, among others, Abdullah Ibrahim, Vijay Iyer, and the classical pianist Sviatoslav Richter (see All Music Guide ).

I accompanied on the piano, in his debuting years 1992 - 1997, Filip Jordens, who is now a professional actor and singer. At that time, we performed Jacques Brel, and he still often does. We have been guests in the studios of the national Belgian Radio 1, and, a warming up program for Arno, but mostly we performed in bars, at parties, and in small concert avenues.

* Copyrights may apply.