Real closed fields with non-standard and standard analytic structure

R. Cluckers, L. Lipshitz and Z. Robinson

ABSTRACT

We consider the ordered field which is the completion of the Puiseux series field over \mathbb{R} equipped with a ring of analytic functions on $[-1,1]^n$ which contains the standard subanalytic functions as well as functions given by t-adically convergent power series, thus combining the analytic structures of Denef and van den Dries [Ann. of Math. 128 (1988) 79–138] and Lipshitz and Robinson [Bull. London Math. Soc. 38 (2006) 897–906]. We prove quantifier elimination and o-minimality in the corresponding language. We extend these constructions and results to rank n ordered fields \mathbb{R}_n (the maximal completions of iterated Puiseux series fields). We generalize the example of Hrushovski and Peterzil [J. Symbolic Logic 72 (2007) 119–122] of a sentence which is not true in any o-minimal expansion of \mathbb{R} (shown in [Bull. London Math. Soc. 38 (2006) 897–906] to be true in an o-minimal expansion of the Puiseux series field) to a tower of examples of sentences σ_n, true in \mathbb{R}_n, but not true in any o-minimal expansion of any of the fields $\mathbb{R}, \mathbb{R}_1, \ldots, \mathbb{R}_{n-1}$.

1. Introduction

In [13], it has been shown that the ordered field K_1 of Puiseux series in the variable t over \mathbb{R}, equipped with a class of t-adically overconvergent functions such as $\sum_n (n+1)!/(tx)^n$, has quantifier elimination and is o-minimal in the language of ordered fields enriched with function symbols for these functions on $[-1,1]^n$. This study was motivated (indirectly) by the observation of Hrushovski and Peterzil [10], that there are sentences true in this structure that are not satisfiable in any o-minimal expansion of \mathbb{R}. This in turn was prompted by a question of van den Dries; see [10] for details.

In [5], it was observed that if K is a maximally complete, non-archimedean real closed field with divisible value group, and if f is an element of $R[[\xi]]$ with radius of convergence greater than 1, then f extends naturally to an ‘analytic’ function $I^n \to K$, where $I = \{x \in K : -1 \leq x \leq 1\}$. Hence if A is the ring of real power series with radius of convergence greater than 1, then K has A-analytic structure; that is, this extension preserves all the algebraic properties of the ring A. In particular, the real quantifier elimination of [4] works in this context so K has quantifier elimination, is o-minimal in the analytic field language, and is even elementarily equivalent to \mathbb{R} with the subanalytic structure. See [6, 7] for extensions.

In Sections 2 and 3 below, we extend the results of [13] by proving quantifier elimination and o-minimality for K_1 in a larger language that contains the overconvergent functions together with the usual analytic functions on $[-1,1]^n$. In Section 4, we extend these results to a larger class of non-archimedean real-closed fields, including fields \mathbb{R}_m, of rank $m = 1, 2, 3, \ldots$, and
in Section 5 we show that the idea of the example of [10] can be iterated so that for each m there is a sentence that is true in \mathbb{R}_m but is not satisfiable in any o-minimal expansion of $\mathbb{R} = \mathbb{R}_0, \mathbb{R}_1, \ldots, \mathbb{R}_{m-1}$. In a subsequent paper, we will give a more comprehensive treatment of both Henselian fields with analytic structure and real closed fields with analytic structure; see [2].

2. Notation and quantifier elimination

In this section, we establish the notation and prove quantifier elimination (Theorem 2.14) for the field of Puiseux series over \mathbb{R} in a language that contains function symbols for all the standard analytic functions on $[-1,1]^n$ and all the t-adically overconvergent functions on this set.

Definition 2.1. We have

$$K_1 := \bigcup_n \mathbb{R}(t^{1/n}),$$

the field of Puiseux series over \mathbb{R},

$$K := \hat{K}_1,$$

the t-adic completion of K_1;

There, K is a real closed, non-archimedean normed field. We shall use $\| \cdot \|$ to denote the (non-archimedean) t-adic norm on K, and $<$ to denote the order on K that comes from the real closedness of K. We will use $| \cdot |$ to denote the corresponding absolute value, $|x| = \sqrt{x^2}$:

- $K^o := \{ x \in K : \|x\| \leq 1 \}$, the finite elements of K;
- $K^{\infty} := \{ x \in K : \|x\| < 1 \}$, the infinitesimal elements of K;
- $K_{alg} := K[\sqrt{-1}]$, the algebraic closure of K;
- $A_{n,\alpha} := \{ f \in \mathbb{R}[[\xi_1, \ldots, \xi_n]] : \text{radius of convergence of } f > \alpha \}, 0 < \alpha \in \mathbb{R}$;
- $\mathcal{R}_{n,\alpha} := A_{n,\alpha} \hat{\otimes} K = (A_{n,\alpha} \hat{\otimes} K)^\wedge$, where $\hat{\otimes}$ stands for the t-adic completion;
- $\mathcal{R}_{n,\alpha}^o := A_{n,\alpha} \hat{\otimes} K^o = (A_{n,\alpha} \hat{\otimes} K^o)^\wedge$;
- $\mathcal{R}_n := \bigcup_{\alpha > 1} \mathcal{R}_{n,\alpha}$;
- $\mathcal{R} := \bigcup_n \bigcup_{\alpha > 1} \mathcal{R}_{n,\alpha}$;
- $I := [-1,1] = \{ x \in K : |x| \leq 1 \}$.

Remark 2.2. (i) The field K has \mathcal{R}-analytic structure; in [5] it is explained how the functions of $A_{n,\alpha}$ are defined on I^n. For example, if $f \in A_{1,\alpha}$, $\alpha > 1$, $a \in \mathbb{R} \cap [-1,1]$, $\beta \in K^{\infty}$, then $f(a + \beta) := \sum_n f^{(n)}(a) \beta^n / n!$. The extension to functions in $\mathcal{R}_{n,\alpha}$ is clear from the completeness of K. We define these functions to be zero outside $[-1,1]^n$. This extension naturally also works for maximally complete fields and fields of LE-series; see also [6, 7].

(ii) The ring \mathcal{R} contains all the ‘standard’ real analytic functions on $[-1,1]^n$ and all the t-adically overconvergent functions in the sense of [13].

(iii) The elements of $A_{n,\alpha}$ in fact define complex analytic functions on the complex polydisc $\{ x \in \mathbb{C} : |x_i| \leq \alpha \text{ for } i = 1, \ldots, n \}$, and hence the elements of $\mathcal{R}_{n,\alpha}$ define ‘K_{alg}-analytic’ functions on the corresponding K_{alg}-polydisc $\{ x \in K_{alg} : |x_i| \leq \alpha \text{ for } i = 1, \ldots, n \}$.

(iv) We could as well work with K_1 instead of K. Then we must replace $\mathcal{R}_{n,\alpha}$ by

$$\mathcal{R}_{n,\alpha}' := \bigcup_m A_{n,\alpha} \hat{\otimes} \mathbb{R}(t^{1/m}) = \bigcup_m \left((A_{n,\alpha} \hat{\otimes} \mathbb{R}(t^{1/m}))^\wedge \right).$$
(v) If $\beta \leq \alpha$ and $m \leq n$, then $R_{\alpha,m} \subset R_{\beta,n}$.

Lemma 2.3. Every non-zero $f \in R_{n,\alpha}$ has a unique representation

$$f = \sum_{i \in J \subset \mathbb{N}} f_i t^{\gamma_i},$$

where the $f_i \in A_{n,\alpha}$, $f_i \neq 0$, $\gamma_i \in \mathbb{Q}$, the γ_i are increasing, $0 \in J$, and, either J is finite of the form $\{0, \ldots, n\}$, or $\gamma_i \rightarrow \infty$ as $i \rightarrow \infty$ and $J = \mathbb{N}$. The function f is a unit in $R_{n,\alpha}$ exactly when f_0 is a unit in $A_{n,\alpha}$.

Proof. Observe that if $a \in K$, $a \neq 0$, then a has a unique representation $a = \sum_{i \in J \subset \mathbb{N}} a_i t^{\gamma_i}$, where the $a_i \in \mathbb{R}$, $a_i \neq 0$, $\gamma_i \in \mathbb{Q}$ and, either J is finite, or $\gamma_i \rightarrow \infty$. If f_0 is a unit in $A_{n,\alpha}$, then $f \cdot f_0^{-1} \cdot t^{-\gamma_0} = 1 + \sum_{i=1}^{\infty} f_i \cdot f_0^{-1} \cdot t^{\gamma_i - \gamma_0}$ and $\gamma_i - \gamma_0 > 0$. \qed

Definition 2.4. (i) In the notation of the previous lemma, f_0 is called the top slice of f.

(ii) We call f regular in ξ_n of degree s at $a \in [I \cap \mathbb{R}]^n$ if, in the classical sense, f_0 is regular in ξ_n of degree s at a.

(iii) We shall abuse the notation and use $\| \cdot \|$ to denote the t-adic norm on K and the corresponding gauss-norm on $R_{n,\alpha}$; so with f as in the above lemma, $\|f\| = \|t^{\gamma_0}\|$.

The standard Weierstrass preparation and division theorems for $A_{n,\alpha}$ extend to corresponding theorems for $R_{n,\alpha}$.

Theorem 2.5 (Weierstrass preparation and division). If $f \in R_{n,\alpha}$ with $\|f\| = 1$ is regular in ξ_n of degree s at 0, then there is a $\delta \in \mathbb{R}$, $\delta > 0$, such that there are unique A_1, \ldots, A_s, U satisfying

$$f = [\xi_n^s + A_1(\xi')\xi_n^{s-1} + \ldots + A_s(\xi')]U(\xi)$$

and

$$A_1, \ldots, A_s, U \in R_{n-1,\delta} \quad \text{and} \quad U \in R_{n,\delta} \text{ a unit}.$$

Then automatically

$$\|A_1\|, \ldots, \|A_s\|, \|U\| \leq 1, \quad \|A_1(0)\|, \ldots, \|A_s(0)\| < 1 \quad \text{and} \quad \|U(0)\| = 1.$$

Furthermore, if $g \in R_{n,\alpha}$ then there are unique $Q \in R_{n,\delta}$ and $R_0(\xi'), \ldots, R_{s-1}(\xi') \in R_{n-1,\delta}$, satisfying

$$\|Q\|, \|R_i\| \leq \|g\|$$

and

$$g = Qf + R_0(\xi') + R_1(\xi')\xi_n + \ldots + R_{s-1}(\xi')\xi_n^{s-1}.$$

Proof. We may assume that $f = \sum_{\gamma \in I} \sum_{\alpha \leq I} f_\alpha t^{\gamma}$, where $I \subset \mathbb{Q}^+$, $0 \in I$, $I = I + I$ and I is well ordered. (We do not require that $f_\alpha \neq 0$ for all $\alpha \in I$, but we do require $f_0 \neq 0$.) We prove the preparation theorem. The proof of the division theorem is similar. We shall produce, inductively on $\gamma \in I$, monic polynomials $P_\gamma[\xi_n]$ with coefficients from $R_{n-1,\delta}$, and units $U_\gamma \in R_{n,\delta}$ such that, writing γ' for the successor of γ in I, we have

$$f \equiv P_\gamma \cdot U_\gamma \mod t^{\gamma'}$$
and if $\gamma < \beta$, then

$$P_\gamma \equiv P_\beta \quad \text{and} \quad U_\gamma \equiv U_\beta \mod t^{\gamma}.$$

Using [9, Theorem II.D.1 (p. 80)], or the proof on [16, pp. 142–144], we see that there is a $0 < \delta < \alpha$ such that for every $g \in A_{n,\delta}$ the Weierstrass data on dividing g by f_0 are in $A_{n,\delta}$.

Now P_0 and U_0 are the classical Weierstrass data for f_0; that is, $f_0 = U_0P_0$, where $P_0 \in A_{n-1,\delta}[\xi_n]$ is monic of degree s and $U \in A_{n,\delta}$ is a unit. Suppose that P_γ and U_γ have been found. Then

$$f \equiv P_\gamma \cdot U_\gamma \mod t^{\gamma'},$$

so we have

$$U^{-1}_\gamma \cdot f \equiv P_\gamma + g_{\gamma'} t^{\gamma'} + o(t^{\gamma'}),$$

where $g_{\gamma'} \in A_{n,\delta}$ and we write $o(t^{\gamma'})$ to denote terms of order greater than γ'. By classical Weierstrass division we can write

$$g_{\gamma'} = P_0 \cdot Q_{\gamma'} + R_{\gamma'},$$

where $Q_{\gamma'} \in A_{n,\delta}$ and $R_{\gamma'} \in A_{n-1,\delta}[\xi_n]$ has degree less than s in ξ_n. Let

$$P_{\gamma'} := P_\gamma + t^{\gamma'} R_{\gamma'}.$$

Then

$$U^{-1}_\gamma \cdot f = P_\gamma + t^{\gamma'}(P_0 Q_{\gamma'} + R_{\gamma'}) + o(t^{\gamma'})$$

$$= (P_{\gamma'} + t^{\gamma'} P_{\gamma'} Q_{\gamma'}) + t^{\gamma'}(P_0 - P_{\gamma'})Q_{\gamma'} + o(t^{\gamma'})$$

$$= P_{\gamma'}(1 + t^{\gamma'} Q_{\gamma'}) + o(t^{\gamma'}),$$

since $P_0 - P_{\gamma'} = o(1)$; that is, it has positive order. Take $U_{\gamma'} := U_\gamma(1 + t^{\gamma'} Q_{\gamma'})$. The uniqueness of the A_i and U follows from the same induction.

Remark 2.6. We remark, for use in a subsequent paper [2], that the argument of the previous proof works in the more general context that I is a well-ordered subset of the value group Γ of a suitably complete field, for example, a maximally complete field, cf. [14].

From the above proof or by direct calculation we have the following corollary.

Corollary 2.7. If $g \in \mathcal{R}_1$, $\beta \in [-1, 1]$ and $g(\beta) = 0$, then $\xi_1 - \beta$ divides g in \mathcal{R}_1.

Remark 2.8. Let $f(\xi, \eta)$ be in $\mathcal{R}_{m+n,\alpha}$. Then there are unique \bar{f}_μ in $\mathcal{R}_{m,\alpha}$ such that

$$f(\xi, \eta) = \sum \bar{f}_\mu(\xi)\eta^\mu.$$

The following lemma is used to prove Theorem 2.10.

Lemma 2.9. Let $f(\xi, \eta) = \sum \bar{f}_\mu(\xi)\eta^\mu \in \mathcal{R}_{m+n,\alpha}$. Then the $\bar{f}_\mu \in \mathcal{R}_{m,\alpha}$ and there exist an integer $d \in \mathbb{N}$, a constant $\beta > 0$, $\beta \in \mathbb{R}$, and $g_\mu \in \mathcal{R}_{m+n,\beta}^\circ$ for $|\mu| < d$, such that

$$f = \sum_{|\mu| < d} \bar{f}_\mu(\xi)g_\mu(\xi, \eta),$$

in $\mathcal{R}_{m+n,\beta}$.
Proof. We may assume that \(\|f\| = 1 \), and choose a \(\nu_0 \) such that \(\|\mathcal{F}_{\nu_0}\| = 1 \). Making an \(\mathbb{R} \)-linear change of variables, and shrinking \(\alpha \) if necessary, we may assume that \(\mathcal{F}_{\nu_0} \) is regular at \(0 \) in \(\xi_m \) of degree \(s \), say. Write \(\xi' \) for \((\xi_1, \ldots, \xi_{m-1}) \). By Weierstrass division (Theorem 2.5) there is a \(\beta > 0 \) and there are
\[
Q(\xi, \eta) \in \mathcal{R}_{m+n, \beta} \quad \text{and} \quad R(\xi, \eta) = R_0(\xi', \eta) + \ldots + R_{s-1}(\xi', \eta)\xi_m^{s-1} \in \mathcal{R}_{m+n-1, \beta}[\xi_m]
\]
such that
\[
f(\xi, \eta) = \mathcal{F}_{\nu_0}(\xi, \eta)Q(\xi, \eta) + R(\xi, \eta).
\]
By induction on \(m \), we may write
\[
R_0 = \sum_{|\mu| < d} \mathcal{R}_{\nu_0, \mu}(\xi')g_\mu(\xi', \eta)
\]
for some \(d \in \mathbb{N} \), some \(\beta > 0 \) and \(g_\mu(\xi', \eta) \in \mathcal{R}_{m+n-1, \beta}^\circ \). Writing \(R = \sum_\nu \mathcal{R}_\nu(\xi)\eta^\nu \), observe that each \(\mathcal{R}_\nu \) is an \(\mathcal{R}_{m, \beta}^\circ \)-linear combination of the \(\mathcal{F}_\nu \), since, taking the coefficient of \(\eta^\nu \) on both sides of the equation \(f(\xi, \eta) = \mathcal{F}_{\nu_0}(\xi, \eta)Q(\xi, \eta) + R(\xi, \eta) \), we have
\[
\mathcal{F}_\nu = \mathcal{F}_{\nu_0}\mathcal{R}_\nu + \mathcal{R}_\nu.
\]
Consider
\[
f - \mathcal{F}_{\nu_0}Q - \sum_{|\mu| < d} \mathcal{R}_\mu(\xi)g_\mu(\xi', \eta) =: S_1\xi_m + S_2\xi_m^2 + \ldots + S_{s-1}\xi_m^{s-1}
\]
\[
= \xi_m[S_1 + S_2\xi_m + \ldots + S_{s-1}\xi_m^{s-2}]
\]
\[
=: \xi_m^s S,
\]
say, where the \(S_i \in \mathcal{R}_{m+n-1, \beta}^\circ \). Again, observe that each \(\mathcal{S}_\nu \) is an \(\mathcal{R}_{m, \beta}^\circ \)-linear combination of the \(\mathcal{F}_\nu \). Complete the proof by induction on \(s \), working with \(S \) instead of \(R \).

Theorem 2.10 (Strong Noetherian property). Let \(f(\xi, \eta) = \sum_\mu \mathcal{F}_\mu(\xi)\eta^\mu \in \mathcal{R}_{m+n, \alpha} \). Then the \(\mathcal{F}_\mu \in \mathcal{R}_{m, \alpha} \) and there exist an integer \(d \in \mathbb{N} \), a constant \(\beta > 0 \), \(\beta \in \mathbb{R} \), and units \(U_\mu(\xi, \eta) \in \mathcal{R}_{m+n, \beta}^\circ \) for \(|\mu| < d \) such that
\[
f = \sum_{\mu \in J} \mathcal{F}_\mu(\xi)\eta^\mu U_\mu(\xi, \eta)
\]
in \(\mathcal{R}_{m+n, \beta} \), where \(J \) is a subset of \(\{0, 1, \ldots, d\}^n \).

Proof. It is sufficient to show that there are an integer \(d \), a set \(J \subset \{0, 1, \ldots, d\}^n \), and \(g_\mu \in \mathcal{R}_{m+n, \beta}^\circ \) such that
\[
f = \sum_{\mu \in J} \mathcal{F}_\mu(\xi)\eta^\mu g_\mu(\xi, \eta),
\]
(2.1)
since then we may assume, rearranging the sum if necessary, that each \(g_\mu \) is of the form \(1 + h_\mu \), where \(h_\mu \in (\eta)\mathcal{R}_{m+n, \beta}^\circ \). Shrinking \(\beta \) if necessary will guarantee that the \(g_\mu \) are units. However, then it is, in fact, sufficient to prove (2.1) for \(f \) replaced by
\[
f_I := \sum_{\mu \in I_i} \mathcal{F}_\mu(\xi)\eta^\mu
\]
for each \(I_i \) in a finite partition \(\{I_i\} \) of \(\mathbb{N}^n \).

By Lemma 2.9 there are an integer \(d \in \mathbb{N} \), a constant \(\beta > 0 \), \(\beta \in \mathbb{R} \), and \(g_\mu \in \mathcal{R}_{m+n, \beta}^\circ \) for \(|\mu| \leq d \) such that
\[
f = \sum_{|\mu| \leq d} \mathcal{F}_\mu(\xi)g_\mu(\xi, \eta).
\]
Rearranging, we may assume for $\nu, \mu \in \{1, \ldots, d\}^n$ that $\bar{g}_{\mu, \nu}$ is equal to 1 if $\mu = \nu$ and that it is equal to 0 otherwise.

Focus on $f_{I_1}(\xi, \eta)$, defined as above by

$$f_{I_1}(\xi, \eta) = \sum_{\mu \in I_1} \bar{f}_\mu(\xi)\eta^\mu$$

with

$$I_1 := \{0, \ldots, d\}^n \cup \{\mu : \mu_i \geq d \text{ for all } i\}$$

and note that

$$f_{I_1}(\xi, \eta) = \sum_{|\nu| \leq d} \bar{f}_\nu(\xi)g_{\mu, I_1}(\xi, \eta)$$

with $g_{\mu, I_1}(\xi, \eta) \in \mathcal{R}_{m+n, \beta}$ defined by the corresponding sum

$$g_{\mu, I_1}(\xi, \eta) = \sum_{\nu \in I_1} \bar{f}_{\mu, \nu}(\xi)\eta^\nu.$$

It is now clear that g_{μ, I_1} is of the form $\eta^\mu(1 + h_\mu)$, where $h_\mu \in (\eta)\mathcal{R}_{m+n, \beta}$.

One now proceeds by noting that $f - f_{I_1}$ is a finite sum of terms of the form f_{I_j} for $j > 1$ and $\{I_j\}_j$ a finite partition of \mathbb{N}^n and where each f_{I_j} for $j > 1$ is of the form $\eta^\nu q(\xi, \eta')$, where η' is $(\eta_1, \ldots, \eta_{i-1}, \eta_{i+1}, \ldots, \eta_n)$ and q is in $\mathcal{R}_{m+n-1, \beta}$.

These terms can be handled by induction on n.

Definition 2.11. For $\gamma \in K^{\text{alg}}_\beta$ let γ° denote the closest element of \mathbb{C}, that is, the unique element γ° of \mathbb{C} such that $|\gamma - \gamma^\circ| \in K^{\text{alg}}_\beta$.

Lemma 2.12. Let $f \in \mathcal{R}_1$. If $f(\gamma) = 0$, then $f_0(\gamma^\circ) = 0$ (if f_0 is the top slice of f). Conversely, if $\beta \in \mathbb{R}$ (or \mathbb{C}) and $f_0(\beta) = 0$, then there is a $\gamma \in K^{\text{alg}}_\beta$ with $\gamma^\circ = \beta$ and $f(\gamma) = 0$. Indeed, f_0 has a zero of order n at $\beta \in \mathbb{C}$ if, and only if, f has n zeros γ (counting multiplicity) with $\gamma^\circ = \beta$.

Proof. Use Weierstrass preparation and [1, Proposition 3.4.1.1].

Corollary 2.13. A non-zero $f \in \mathcal{R}_{1, \alpha}$ has only finitely many zeros in the set $\{x \in K^{\text{alg}}_\beta : |x| \leq \alpha\}$. Indeed, there exist a polynomial $P(x) \in K[x]$ and a unit $U(x) \in \mathcal{R}_{1, \alpha}$ such that $f(x) = P(x) \cdot U(x)$.

Proof. Observe that f_0 has only finitely many zeros in $\{x \in \mathbb{C} : |x| \leq \alpha\}$, and that non-real zeros occur in complex conjugate pairs, and that f is a unit exactly when f_0 has no zeros in this set (that is, when f_0 is a unit in $A_{1, \alpha}$), and use Lemma 2.12.

Theorem 2.14 (Quantifier elimination theorem). Denote by \mathcal{L} the language $\{+, \cdot, ^{-1}, 0, 1, <, \mathbb{R}\}$, where the functions in \mathcal{R}_n are interpreted to be zero outside \mathbb{R}^n. Then K admits quantifier elimination in \mathcal{L}.

Proof. This is a small modification of the real quantifier elimination of [4] as in [5], using the Weierstrass preparation theorem and the strong Noetherian property above. Crucial is that,
in Theorems 2.5 and 2.10, as in [4], β and δ are positive real numbers so one can use the compactness of $[-1,1]^n$ in \mathbb{R}^n.

3. The o-minimality

In this section, we prove the o-minimality of K in the language \mathcal{L}. Let $\alpha > 1$. As we remarked above, each $f \in A_{n,\alpha}$ defines a function from the polydisc $(I_{C,\alpha})^n \to \mathbb{C}$, where $I_{C,\alpha} := \{x \in \mathbb{C} : |x| \leq \alpha\}$, and hence each $f \in \mathcal{R}_{n,\alpha}$ defines a function from $(I_{K_{\text{alg},\alpha}})^n \to K_{\text{alg}}$, where $I_{K_{\text{alg},\alpha}} := \{x \in K_{\text{alg}} : |x| \leq \alpha\}$. In general $A_{n,\alpha}$ is not closed under composition. However, if $F(\eta_1, \ldots, \eta_m) \in \mathcal{R}_{m,\alpha}$, $G_j(\xi) \in \mathcal{R}_{n,\beta}$ for $j = 1, \ldots, m$ and $|G_j(x)| \leq \alpha$ for all $x \in (I_{K_{\text{alg},\beta}})^n$, then $F(G_1(\xi), \ldots, G_m(\xi)) \in \mathcal{R}_{m,\beta}$. This is clear if $F \in A_{n,\alpha}$ and the $G_j \in A_{n,\beta}$. The general case follows easily.

For $c, r \in K$, $r > 0$, we denote the ‘closed interval’ with center c and radius r by

$$I(c, r) := \{x \in K : |x - c| \leq r\}$$

and for $c, \delta, \varepsilon \in K$, $0 < \delta < \varepsilon$, we denote the ‘closed annulus’ with center c, inner radius δ and outer radius ε by

$$A(c, \delta, \varepsilon) := \{x \in K : \delta \leq |x - c| \leq \varepsilon\}.$$

On occasion we will consider $I(c, r)$ as a disc in K_{alg} and $A(c, \delta, \varepsilon)$ as an annulus in K_{alg}, replacing K by K_{alg} in the definitions. No confusion should result. Note that these discs and annuli are defined in terms of the real-closed order on K, not the non-archimedean absolute value $\| \cdot \|$, and hence are not discs or annuli in the sense of [1], [13] or [8], which we will refer to as affinoid discs and affinoid annuli. For $I = I(c, r)$, $A = A(c, \delta, \varepsilon)$ as above, we define the rings of analytic function on I and A as follows:

$$\mathcal{O}_I := \left\{f \left(\frac{x - c}{r}\right) : f \in \mathcal{R}_I \right\}$$

and

$$\mathcal{O}_A := \left\{g \left(\frac{\delta}{x - c}\right) + h \left(\frac{x - c}{\varepsilon}\right) : g, h \in \mathcal{R}_I, \ g(0) = 0 \right\}.$$

The elements of \mathcal{O}_I and \mathcal{O}_A are analytic functions on, respectively, the corresponding K_{alg}-disc and the K_{alg} annulus as well.

Remark 3.1. (i) Elements of \mathcal{O}_A are multiplied using the relation $(\delta/(x - c))(\delta/(x - c)/\varepsilon) = \delta/\varepsilon$ and the fact that $|\delta/\varepsilon| < 1$. Indeed, let $g(\xi_1) = \sum_{i} a_i \xi_1^i$, $h(\xi_2) = \sum_{i} b_j \xi_2^i$. Then, using the relation $\xi_1 \xi_2 = \delta/\varepsilon$, we have

$$g \cdot h = \sum_{j<i} a_i b_j \left(\frac{\delta}{\varepsilon}\right)^j \xi_1^i + \sum_{i<j} a_i b_j \left(\frac{\delta}{\varepsilon}\right)^{j-i} \xi_2^{j-i} = f_1(\xi_1) + f_2(\xi_2).$$

If $g, h \in A_{1,\alpha}$ and $\delta/\varepsilon \in \mathbb{R}$, then $f_1, f_2 \in A_{1,\alpha}$, and this extends easily to the case $g, h \in \mathcal{R}_{1,\alpha}$ and $\delta/\varepsilon \in K^\circ$. Lemma 3.6 will show that, in fact, the only case of an annulus that we must consider is when $\delta/\varepsilon \in K^{\circ \circ}$.

(ii) We define the gauss-norm on \mathcal{O}_I by

$$\|f \left(\frac{x - c}{r}\right)\| = \|f(\xi)\|,$$

and on \mathcal{O}_A by

$$\|g \left(\frac{\delta}{x - c}\right) + h \left(\frac{x - c}{\varepsilon}\right)\| := \max\{\|g(\xi_1)\|, \|h(\xi_2)\|\}.$$
It is clear that the gauss-norm equals the supremum norm.

(iii) If \(f \in \mathcal{O}_I \), then \(\|(x - c)/r\|_f = \|f\|. \) If \(f \in \mathcal{O}_A \), then \(\|(x - c)/\varepsilon\|_f \leq \|f\| \) and if \(\delta/\varepsilon \in K^{\infty} \) (that is, is infinitesimal), then

\[
\left\| \left(\frac{x - c}{\varepsilon} \right) g \left(\frac{\delta}{x - c} \right) \right\| = \left\| \frac{\delta}{\varepsilon} \right\| \cdot \left\| g \left(\frac{\delta}{x - c} \right) \right\| < \left\| g \left(\frac{\delta}{x - c} \right) \right\|.
\]

and

\[
\left\| \left(\frac{x - c}{\varepsilon} \right) h \left(\frac{x - c}{\varepsilon} \right) \right\| = \left\| h \left(\frac{x - c}{\varepsilon} \right) \right\|.
\]

(iv) If \(\|f\| < 1 \), then \(1 - f \) is a unit in \(\mathcal{O}_A \). (In fact, it is a strong unit — a unit \(u \) satisfying \(\|1 - u\| < 1 \).)

Definition 3.2. (i) We say that \(f \in \mathcal{O}_{I(0,1)} = \mathcal{R}_1 \) has a zero close to \(a \in I(0,1) \) if \(f \), as a \(K_{\text{alg}} \)-function defined on the \(K_{\text{alg}} \)-disc \(\{x : |x| \leq \alpha\} \) for some \(\alpha > 1 \), has a \(K_{\text{alg}} \)-zero \(b \) with \(a - b \) infinitesimal in \(K_{\text{alg}} \). We say \(f \) has a zero close to \(I(0,1) \) if it has a zero close to \(a \) for some \(a \in I(0,1) \). For an arbitrary interval \(I = I(c,r) \) we say that \(f = F((x - c)/r) \in \mathcal{O}_I \) has a zero close to \(a \in I \) if \(F \) has a zero close to \((a - c)/r \in I(0,1) \), and that \(f \) has a zero close to \(I(c,r) \) if \(F \) has a zero close to \(I(0,1) \).

(ii) For \(a, b \in K^{\infty}, a, b > 0 \), we write \(a \sim b \) if \(a/b, b/a \in K^{\infty} \) and we write \(a \ll b \) if \(a/b \in K^{\infty} \).

(iii) Let \(X \) be an interval or an annulus, and let \(f \) be defined on a superset of \(X \). We shall write \(f \in \mathcal{O}_X \) to mean that there is a function \(g \in \mathcal{O}_X \) such that

\[
f|_X = g.
\]

Lemma 3.3. If \(f \in \mathcal{O}_{I(c,r)} \) has no zero close to \(I(c,r) \), then there is a cover of \(I(c,r) \) by finitely many closed intervals \(I_j = I(c_j, r_j) \) such that \(1/f \in \mathcal{O}_{I_j} \) for each \(j \).

Proof. It is sufficient to consider the case \(I(c,r) = I(0,1) \). Cover \(I(0,1) \) by finitely many intervals \(I(c_j, r_j), c_j, r_j \in \mathbb{R} \), such that \(f \) has no \(K_{\text{alg}} \)-zero in the \(K_{\text{alg}} \)-disc \(I(c_j, r_j) \). Finally use Corollary 2.13.

Remark 3.4. The function \(f(x) = 1 + x^2 \) has no zeros close to \(I(0,1) \). It is not a unit in \(\mathcal{O}_{I(0,1)} \), but it is a unit in both \(\mathcal{O}_{I(-1,2/1,2)} \) and \(\mathcal{O}_{I(1,2,1/2)} \). The function \(g(x) = x \) is not a unit in \(\mathcal{O}_{I(\delta, \varepsilon)} \) for any \(0 < \delta \in K^{\infty} \) and \(0 < \varepsilon \in K^{\infty} \). It is of course a unit in \(\mathcal{O}_{A(\delta, \varepsilon)} \). The function \(1/f = 1/x \in A(0, \delta, 1) \) for all \(\delta > 0 \) but is not in \(\mathcal{O}_I \) for \(I = I(1 + \delta)/2, (1 - \delta)/2 \), for any \(\delta \in K^{\infty} \). Thus we see that if \(X_1 \subset X_2 \) are annuli or intervals, then it does not necessarily follow that \(\mathcal{O}_{X_2} \subset \mathcal{O}_{X_1} \). However, the following are clear. If \(I_1 \subset I_2 \) are intervals, then \(\mathcal{O}_{I_2} \subset \mathcal{O}_{I_1} \). If \(0 < \delta \in K^{\infty}, 0 < r \in K^{\infty} \setminus K^{\infty}, r < 1 \), and \(A = A(0, \delta, 1), I = I((1 + r)/2, (1 - r)/2) \), then \(\mathcal{O}_A \subset \mathcal{O}_I \). If \(A_1 \subset A_2 \) are annuli that have the same center, then \(\mathcal{O}_{A_2} \subset \mathcal{O}_{A_1} \). If \(0 < \delta \ll c \) and \(0 < r < c/\alpha \) for some \(\alpha \in \mathbb{R}, \alpha > 1 \), and \(I = I(c,r) \subset A(0, \delta, 1) = A \), then \(\mathcal{O}_A \subset \mathcal{O}_I \).

Writing \(x = c - y, |y| \leq r \) we see that

\[
\frac{\delta}{x} = \frac{\delta}{c - y} = \frac{\delta/c}{1 - y/c} + \frac{\delta}{c} \sum \left(\frac{y}{c} \right)^k = \frac{\delta}{c} \sum \left(\frac{y}{c} \right)^k.
\]

Restating Corollary 2.13 we have the following corollary.

Corollary 3.5. If \(f \in \mathcal{O}_{I(c,r)} \), then there exist a polynomial \(P \in K[\xi] \) and a unit \(U \in \mathcal{O}_{I(c,r)} \) such that \(f(\xi) = P(\xi) \cdot U(\xi) \).
Lemma 3.6. If $\varepsilon < N \delta$ for some $N \in \mathbb{N}$, then there is a covering of $A(c, \delta, \varepsilon)$ by finitely many intervals I_j such that for every $f \in \mathcal{O}_{A(c, \delta, \xi)}$ and each j, we have $f \in \mathcal{O}_{I_j}$.

Proof. Use Lemma 3.3 or reduce directly to the case $\varepsilon = 1, 0 < \delta = r \in \mathbb{R}$ and the two intervals $[-1, -r] = I \left(\frac{-1 + r}{2}, \frac{1 - r}{2}\right)$ and $[r, 1] = I \left(\frac{1 + r}{2}, \frac{1 - r}{2}\right)$. □

The following lemma is key for proving o-minimality.

Lemma 3.7. Let $f \in A(c, \delta, \varepsilon)$. There are finitely many intervals and annuli X_j that cover $A(c, \delta, \varepsilon)$, polynomials P_j and units $U_j \in \mathcal{O}_{X_j}$ such that for each j we have $f|_{X_j} = (P_j \cdot U_j)|_{X_j}$.

Proof. By the previous lemma, we may assume that $c = 0, \varepsilon = 1$ and $\delta \in K^{\circ\circ}$ (that is, δ is infinitesimal, say $\delta = t^\gamma$ for some $\gamma > 0$). Let

$$f(x) = g \left(\frac{\delta}{x}\right) + h(x) \quad \text{with} \quad g(\xi), h(\xi) \in \mathcal{R}_1, \ g(0) = 0,$$

and

$$g(\xi) = \sum_{i \in I \subseteq \mathbb{N}} t^{\alpha_i} \xi^{n_i} g_i(\xi)$$

with $n_i > 0, g_i(0) \neq 0, g_i \in A_{1, \alpha}$ for some $\alpha > 1$. Observe that

$$xg \left(\frac{\delta}{x}\right) = \sum_{i \in I} (t^{\alpha_i} \delta) \left(\frac{\delta}{x}\right)^{n_i - 1} g_i \left(\frac{\delta}{x}\right).$$

Hence (see Remark 3.1) for suitable $n \in \mathbb{N}$, absorbing the constant terms into h, we have

$$x^n f(x) = \overline{g} \left(\frac{\delta}{x}\right) + \overline{h}(x)$$

where $\overline{g}(0) = 0$ and $\| \overline{g} \| < \| \overline{h} \|$. (For use in Section 4, below, note that this argument does not use the restriction that K is complete or of rank 1.) Multiplying by a constant, we may assume that $\| \overline{h} \| = 1$. Let

$$\overline{g}(\xi) = \sum_{i \in I} t^{\beta_i} \xi^{m_i} \overline{g}_i(\xi) \quad \text{with} \quad m_i > 0 \quad \text{and} \quad \beta_i > 0 \quad \text{for each} \ i,$$

and

$$\overline{h}(\xi) = \xi^{k_0} \overline{h}_0(\xi) + \sum_{i \in J \subseteq \mathbb{N}, 0} t^{\gamma_i} \overline{h}_i(\xi) \quad \text{with} \quad \overline{h}_0(0) \neq 0 \quad \text{and} \quad \gamma_i > 0 \quad \text{increasing}.$$

Since $\| \overline{g} \| = \| t^{\beta_0} \| < 1$ there is a δ' with $\delta \leq \delta' \in K^{\circ\circ}$ (that is, $\| \delta' \| < 1$) such that

$$\| t^{\gamma_i} \| < \| (\delta')^{k_0} \| \quad \text{and} \quad \| \overline{g} \| < \| (\delta')^{k_0} \|.$$

Splitting off some intervals of the form

$$I \left(\frac{-1 - r}{2}, \frac{1 + r}{2}\right) = [-1, -r] \quad \text{or} \quad I \left(\frac{1 + r}{2}, \frac{1 - r}{2}\right) = [r, 1] \quad \text{for} \ r > 0, \ r \in \mathbb{R},$$

we have
(on which the result reduces to Corollary 3.5 by Remark 3.4) and renormalizing, we may assume that \(h_0 \) is a unit in \(A_{1,\alpha} \), for some \(\alpha > 1 \). Therefore,

\[
x^n f(x) = g \left(\frac{\delta}{x} \right) + h(x)
\]

\[
= h_0(x) x^{k_0} \left[1 + \sum_{i=1}^{\infty} \left(\frac{\delta}{P(x)} \right)^{k_i} t^{\alpha_i} \frac{h_1(x)}{h_0(x)} + \frac{1}{h_0(x)} \left(\frac{1}{\delta'} \right)^{k_0} \left(\frac{\delta'}{x} \right)^{\delta'} g \left(\frac{\delta'}{\delta} \right) \right].
\]

By our choice of \(\delta' \) and Remark 3.1 the quantity in square brackets is a (strong) unit. Hence we have taken care of an annulus of the form \(A(0, \delta', 1) \) for some \(\delta' \) with \(|\delta| \leq |\delta'| \) and \(\|\delta'\| < 1 \).

Observe that on the much bigger affinoid \(\mathcal{O} \) (on which the result reduces to Corollary 3.5 by Remark 3.4) and renormalizing, we may assume \(\delta = \delta'/x \) interchanges the sets

\[
\{ x : \|x\| = \|\delta\| \text{ and } \delta \leq |x| \} \quad \text{and} \quad \{ y : \|y\| = 1 \text{ and } |y| \leq 1 \}.
\]

Hence, as above, there is a \(\delta'' \in K^{\infty} \) with \(\|\delta\| \leq \|\delta''\| \) and a covering of the annulus \(\delta \leq |x| \leq \delta'' \) by finitely many intervals and annuli with the required property.

It remains to treat the annulus \(\delta'' \leq |x| \leq \delta' \). Using the terminology of [11] and [13], observe that on the much bigger affinoid annulus \(\|\delta''\| \leq \|x\| \leq \|\delta'\| \) the function \(f \) is strictly convergent, indeed even overconvergent. Hence, as in [13, Lemma 3.6], on this affinoid annulus we can write

\[
f = \frac{P(x)}{x^t} \cdot U(x),
\]

where \(P(x) \) is a polynomial and \(U(x) \) is a strong unit (that is, \(\|U(x) - 1\| < 1 \)).

Corollary 3.8. If \(X \) is an interval or an annulus and \(f \in \mathcal{O}_X \), then the set \(\{ x \in X : f(x) \geq 0 \} \) is semialgebraic (that is, a finite union of (closed) intervals).

Proof. This is an immediate corollary of Corollary 3.5 and Lemma 3.7, since units do not change sign on intervals and since an annulus has two intervals as connected components.

Definition 3.9. For \(c = (c_1, \ldots, c_n) \), \(r = (r_1, \ldots, r_n) \) we define the poly-interval

\[
I(c, r) := \{ x \in K^n : |x_i - c_i| \leq r_i, \ i = 1, \ldots, n \}.
\]

This also defines the corresponding polydisk in \((K_{\text{alg}})^n \). The ring of analytic functions on this poly-interval (or polydisc) is

\[
\mathcal{O}_I(c, r) := \left\{ f \left(\frac{x_1 - c_1}{r_1}, \ldots, \frac{x_n - c_n}{r_n} \right) : f \in \mathcal{R}_n \right\}.
\]

Lemma 3.10. Let \(\alpha, \beta > 1 \), \(F(\eta_1, \ldots, \eta_m) \in \mathcal{R}_{m,\alpha} \) and \(G_j(\xi_1, \ldots, \xi_n) \in \mathcal{R}_{n,\beta} \) with \(\|G_j\| \leq 1 \) for \(j = 1, \ldots, m \). Let \(X = \{ x \in [-1, 1]^n : |G_j(x)| \leq 1 \text{ for } j = 1, \ldots, m \} \). There are (finitely many) \(c_i = (c_{i1}, \ldots, c_{im}) \in \mathbb{R}^n \), \(\varepsilon_i \in \mathbb{R}, \varepsilon_i > 0 \) with \(\varepsilon_i < |c_{ij}| \) if \(c_{ij} \neq 0 \) such that the (poly) intervals \(I_j = \{ x \in K : |x_j - c_{ij}| < \varepsilon_i \text{ for } j = 1, \ldots, n \} \) cover \(X \), \(|G_j(x)| < \alpha \) for all \(x \in I_j, \ j = 1, \ldots, m \), and there are \(H_i \in \mathcal{O}_I \) such that

\[
F(G_1, \ldots, G_m)|_{I_j} = H_i|_{I_j}.
\]

Proof. Use the compactness of \([-1, 1]^n \cap \mathbb{R}^n\) and the following facts. If \(\|G_j\| = 1 \), then \(|G_j(x) - G_j(y)(x)| \) is infinitesimal for all \(x \in K^o \), where \(G_jy \) is the top slice of \(G_j \). If \(\|G_j\| < 1 \), then \(|G_j(x)| < K^\infty \) for all \(x \in [-1, 1]^n \).
Corollary 3.11. (i) Let I be an interval, $F(\eta_1, \ldots, \eta_m) \in \mathcal{R}_m$ and $G_j \in \mathcal{O}_I$ for $j = 1, \ldots, m$. Then there are finitely many intervals I_i covering I and functions $H_i \in \mathcal{O}_{I_i}$ such that for each i

$$F(G_1, \ldots, G_m)|_{I_i} = H_i|_{I_i}.$$

(ii) Let A be an annulus, $F(\eta_1, \ldots, \eta_m) \in \mathcal{R}_m$ and $G_j \in \mathcal{O}_A$ for $j = 1, \ldots, m$. Then there are finitely many X_i, each an interval or an annulus, covering A and $H_i \in \mathcal{O}_{X_i}$ such that for each i

$$F(G_1, \ldots, G_m)|_{X_i} = H_i|_{X_i}.$$

Proof. Part (i) reduces to Lemma 3.10 once we see that if $\|G_j\| > 1$, then we can use Corollary 2.13 to restrict to the subintervals of I around the zeros of G_j on which $|G_j| \leq C$ for some $C \in \mathbb{R}$, $C > 1$. On the rest of I, $F(G_1, \ldots, G_m)$ is zero.

For (ii), we may assume that $A = A(0, \delta, 1)$ with δ infinitesimal and that $G_j(x) = G_{j_1}(\delta/x) + G_{j_2}(x)$. As in (i), we may reduce to the case that $\|G_j\| \leq 1$, using Lemma 3.7 instead of Corollary 2.13, and using Lemma 3.6 and Remark 3.4. Apply Lemma 3.10 to the functions F and $G'_j(\xi_1, \xi_2) = G_{j_1}(\xi_1) + G_{j_2}(\xi_2)$. The case $c = (0, 0)$ gives us the annulus $|\delta/x| \leq \varepsilon$, $|x| \leq \varepsilon$ that is $\varepsilon/\varepsilon \leq |x| \leq \varepsilon$. The case $c = (0, c_2)$ with $c_2 \neq 0$ gives us $|\delta/x| \leq \varepsilon$ and $|x - c_2| \leq \varepsilon$ with $\varepsilon < |c_2|$. This is equivalent to $|x - c_2| \leq \varepsilon$ since $\varepsilon, c_1 \in \mathbb{R}$, and hence equivalent to

$$-\varepsilon \leq x - c_2 \leq \varepsilon \quad \text{or} \quad c_2 - \varepsilon \leq x \leq c_2 + \varepsilon$$

which is an interval bounded away from 0. The case $c = (c_1, 0)$ gives us $|\delta/x - c_1| \leq \varepsilon$, $|x| \leq \varepsilon$ (since $\varepsilon < |c_1|$) which is equivalent to $|\delta/x - c_1| \leq \varepsilon$ or $c_1 - \varepsilon \leq \delta/x \leq c_1 + \varepsilon$ or (considering the case $c_1 > 0$; the case $c_1 < 0$ is similar) $\delta/(c_1 + \varepsilon) \leq x \leq \delta/(c_1 - \varepsilon)$ which is part of an annulus that can be reduced to intervals using Lemma 3.6. The case $c = (c_1, c_2)$ with both $c_1, c_2 \neq 0$ is vacuous since either x or δ/x is infinitesimal on A and $\varepsilon < |c_1|, |c_2|$.

Lemma 3.12. Let X be an interval or an annulus and let $f, g \in \mathcal{O}_X$. There are finitely many subintervals and subannuli $X_i \subset X$, $i = 1, \ldots, \ell$, such that

$$\{x \in X : |f(x)| \leq |g(x)|\} \subset \bigcup_{i=1}^{\ell} X_i \subset X,$$

and, except at finitely many points,

$$\frac{f}{g}|_{X_i} \in \mathcal{O}_X.$$

Proof. We consider the case that X is an interval, I, and may take $I = I(0, 1) = [-1, 1]$. We may assume by Corollary 3.5 that f and g have no common zero. If g has no zeros close to $I(0, 1)$, then we are done by Lemma 3.3. Let $\alpha_1, \ldots, \alpha_n$ be the distinct elements of $[-1, 1] \cap \mathbb{R}$ such that g has at least one zero close to $(\text{that is, within an infinitesimal of})$ α. Breaking into subintervals and making changes of variables we may assume that $n = 1$ and that $\alpha_1 = 0$. Again making a change of variables (over K) we may assume that g has at least one zero with zero ‘real’ part, that is, of the form $\alpha = \sqrt{-1}a$ for some $a \in K$. Let N denote the number of zeros of $f \cdot g$ close to 0 in $I(0, 1)$. Let $\delta = 3 \cdot \max \{|x| : x \in K_{\text{alg}} \text{ close to } 0 \text{ and } f(x) \cdot g(x) = 0\}$. If $\delta = 0$, then $\alpha = \alpha = 0$ and there is no other zero of $f \cdot g$ close to zero in $I(0, 1)$. Then there is a $\delta' > 0$ such that for $|x| < \delta'$ we have $|g(x)| < |f(x)|$. Then the interval $I(0, \delta')$ drops away, and on the annulus $A(0, \delta', 1)$ the function g is a unit. If $\delta > 0$, then we consider the interval $I(0, \delta)$ and the annulus $A(0, \delta, 1)$ separately, and proceed by induction on N. Therefore, suppose that $\delta > 0$ and $f \cdot g$ has N zeros close to 0 in $I(0, 1)$. Let α be as above. If $\alpha \sim \delta$, then the zero
\[a = \sqrt{-1} \alpha \text{ is not close to } I(0, \delta) \text{ and by restricting to } I(0, \delta) \text{ we have reduced } N. \text{ If } |\alpha| < \delta, \text{ then this zero is close to } 0 \text{ in } I(0, \delta), \text{ but the largest zeros (those of size } \delta/3 \text{) are not close to } 0 \text{ in } I(0, \delta), \text{ and hence restricting to } I(0, \delta) \text{ again reduces } N. \]

It remains to consider the case of the annulus \(A(0, \delta, 1) = \{ x : \delta \leq |x| \leq 1 \} \) where all the zeros of \(g \) are within \(\delta/3 \) of 0. By Lemma 3.7, we may assume that \(g(x) = P(x) \cdot U(x) \), where \(U \) is a unit and all the zeros of \(P \) are within \(\delta/3 \) of 0. Let \(\alpha_i, i = 1, \ldots, \ell, \) be these zeros. For \(|x| \geq \delta \) we may write

\[
\frac{1}{x - \alpha_i} = \frac{1}{x} \cdot \frac{1}{1 - \alpha_i/x} = \frac{1}{x} \sum_{j=0}^{\infty} \left(\frac{\alpha_i}{x} \right)^j = \frac{1}{x} \sum_{j=0}^{\infty} \left(\frac{\alpha_i}{\delta} \right)^j \left(\frac{\delta}{x} \right)^j \quad \text{and} \quad |\frac{\alpha_i}{\delta}| \leq \frac{1}{3}. \]

Hence \(f/g \in O_{A(0, \delta, 1)} \). This completes the case that \(X \) is an interval.

The case that \(X \) is an annulus is similar — one can cover \(X \) with finitely many subannuli \(X_i \) and subintervals \(Y_j \) such that for each \(i, g|_{X_i} \) is a unit in \(O_{X_i} \), and for each \(j, f|_{Y_j}, g|_{Y_j} \in O_{Y_j}. \)

From Corollary 3.11 and Lemma 3.12, we now have the following proposition, by induction on terms.

Proposition 3.13. Let \(f_1, \ldots, f_\ell \) be \(\mathcal{L} \)-terms in one variable, \(x \). There is a covering of \([-1, 1]\) by finitely many intervals and annuli \(X_i \) such that except for finitely many values of \(x \), we have for each \(i \) and \(j \) that \(f_i|_{X_i} \in O_{X_i} \) (that is, \(f_i|_{X_i} \) agrees with an element of \(O_{X_i} \) except at finitely many points of \(X_i \)).

This, together with Corollary 3.8, gives the following theorem.

Theorem 3.14. The field \(K \) is o-minimal in \(\mathcal{L} \).

4. Further extensions

In this section, we give extensions of the results of Sections 2 and 3 and the results of [13].

Let \(G \) be an (additive) ordered abelian group. Let \(t \) be a symbol. Then \(t^G \) is a (multiplicative) ordered abelian group. Following the notation of [5, 6] (but not [7] or [12]) we define \(\mathbb{R}((t^G)) \) to be the maximally complete valued field with additive value group \(G \) (or multiplicative value group \(t^G \)) and residue field \(\mathbb{R} \). Therefore,

\[
\mathbb{R}((t^G)) := \left\{ \sum_{g \in I} a_g t^g : a_g \in \mathbb{R} \text{ and } I \subset G \text{ well ordered} \right\}.
\]

We shall be a bit sloppy about mixing the additive and multiplicative valuations. \(I \subset G \) is well ordered exactly when \(t^I \subset t^G \) is reverse well ordered. The field \(K \) of Puiseux series, or its completion, is a proper subfield of \(\mathbb{R}_1 := \mathbb{R}((t^G)) \). Considering \(G = \mathbb{Q}^m \) with the lexicographic ordering, we define

\[
\mathbb{R}_m := \mathbb{R}((t^{G_m})).
\]

It is clear that if \(G_1 \subset G_2 \) as ordered groups, then \(\mathbb{R}((t^{G_1})) \subset \mathbb{R}((t^{G_2})) \) as valued fields. Also, \(\mathbb{R}((t^G)) \) is Henselian and, if \(G \) is divisible, then \(\mathbb{R}((t^G)) \) is real closed. We shall continue to use ‘\(<\)’ for the corresponding order on \(\mathbb{R}((t^G)) \).

In analogy with Section 2, we define the following.
Definition 4.1. We have
\[
\mathcal{R}_{n,\alpha}(G) := A_{n,\alpha} \hat{\otimes}_{\mathbb{R}} \mathbb{R}((t^G))
\]
\[
= \left\{ \sum_{g \in I} f_g t^g : f_g \in A_{n,\alpha} \text{ and } I \subset G \text{ well ordered} \right\}
\]
\[
\mathcal{R}_n(G) := \bigcup_{\alpha > 1} \mathcal{R}_{n,\alpha}(G)
\]
\[
\mathcal{R}(G) := \bigcup_n \bigcup_{\alpha > 1} \mathcal{R}_{n,\alpha}(G).
\]

As in Section 2, the elements of \(\mathcal{R}_n(G)\) define functions from \(I^n \subset \mathbb{R}((t^G))^n\) to \(\mathbb{R}((t^G))\). Indeed this interpretation is a ring endomorphism. In other words, the field \(\mathbb{R}((t^G))\) has analytic \(\mathcal{R}(G)\)-structure. (See [3] and especially [2] for more about fields with analytic structure.) The elements of \(\mathcal{R}_n(G)\) are interpreted as zero on \(\mathbb{R}((t^G)) \setminus I^n\).

Theorem 4.2. The Weierstrass preparation theorem (Theorem 2.5) and the strong Noetherian property (Theorem 2.10) hold with \(\mathcal{R}\) replaced by \(\mathcal{R}(G)\).

Proof. Only minor modifications to the proofs of Theorems 2.5 and 2.10 are needed.

The arguments of Sections 2 and 3 prove the following theorem.

Theorem 4.3. If \(G\) is divisible, then \(\mathbb{R}((t^G))\) admits quantifier elimination and is \(\alpha\)-minimal in \(\mathcal{L}_G\).

Corollary 4.4. If \(G_1 \subset G_2\) are divisible, then \(\mathbb{R}((t^{G_1})) \prec \mathbb{R}((t^{G_2}))\) in \(\mathcal{L}_{G_1}\).

We shall show in Section 5 that, though for \(m < n\) we have \(\mathbb{R}_m \prec \mathbb{R}_n\) in \(\mathcal{L}_{Q^m}\), there is a sentence of \(\mathcal{L}_{Q^n}\) that is true in \(\mathbb{R}_n\) but is not true in any \(\alpha\)-minimal expansion of \(\mathbb{R}_m\).

The results of [13] also extend to this more general setting.

Definition 4.5. We define the ring of *strictly convergent power series over \(\mathbb{R}((t^G))\) as
\[
\mathbb{R}((t^G))^*\langle \xi \rangle := \left\{ \sum_{g \in I} a_g(\xi)t^g : a_g(\xi) \in \mathbb{R}[\xi] \text{ and } I \text{ well ordered} \right\},
\]
and the subring of *overconvergent power series over \(\mathbb{R}((t^G))\) as
\[
\mathbb{R}((t^G))^*\langle \langle \xi \rangle \rangle := \{ f : f(\gamma\xi) \in \mathbb{R}((t^G))^*\langle \xi \rangle \text{ for some } \gamma \in \mathbb{R}((t^G)), \|\gamma\| > 1 \},
\]
\[
\mathcal{R}(G)_{\text{over}} := \bigcup_n \mathbb{R}((t^G))^*\langle \langle \xi_1, \ldots, \xi_n \rangle \rangle,
\]
and the corresponding overconvergent language as
\[
\mathcal{L}_{G,\text{over}} := \langle +, -, 1, 0, <, \mathcal{R}(G)_{\text{over}} \rangle.
\]
As in [13] we have the following theorem.

Theorem 4.6. If G is divisible, then $\mathbb{R}((t^G))$ admits quantifier elimination and is o-minimal in $\mathcal{L}_{G, \text{over}}$.

Of course the o-minimality follows immediately from Theorem 4.3.

5. Extensions of the example of Hrushovski and Peterzil

In this section, we show that with minor modifications, the idea of the example of [10] can be iterated to give a nested family of examples. This relates to a question of Hrushovski and Peterzil as to whether there exists a small class of o-minimal structures such that any sentence, true in some o-minimal structure, can be satisfied in an expansion of a model in the class. Combining this with expansions with the exponential function, one can perhaps elaborate the tower of examples further.

Consider the functional equation

$$F(\beta z) = \alpha z F(z) + 1,$$ \hspace{1cm} (*)

and suppose that F is a ‘complex analytic’ solution for $|z| \leq 1$. By this we mean that, writing $z = x + \sqrt{-1}y$, $F(z) = f(x, y) + \sqrt{-1}g(x, y)$, $F(z)$ is differentiable as a function of z. This is a definable condition on the two ‘real’ functions, f, g of the two ‘real’ variables x, y. Then

$$F(z) = \sum_{k=0}^{\infty} a_k z^k,$$

where

$$a_k = \frac{\alpha^k}{\beta^{k(k+1)/2}}$$

(α, and β are parameters).

By this we mean that for each $n \in \mathbb{N}$ there is a constant A_n such that

$$\left| F(z) - \sum_{k=0}^{n} a_k z^k \right| \leq A_n |z^{n+1}|$$ \hspace{1cm} (**)

is true for all z with $|z| \leq 1$. Indeed, by [15, Theorem 2.50], one can take $A_n = C \cdot 2^{n+1}$, for C a constant independent of n.

Consider the following statement: $F(z)$ is a complex analytic function (in the above sense) on $|z| \leq 1$ that satisfies (**); the number $\beta > 0$ is within the radius of convergence of the function $f(z) = \sum_{n=1}^{\infty} (n-1)!z^n$ and $\alpha > 0$.

This statement is not satisfiable by any functions in any o-minimal expansion of the field of Puiseux series K_1, or the maximally complete field $\mathbb{R}_1 = \mathbb{R}((t^Q))$, because, if it were, we would have $\|\beta\| = \|t^\gamma\|$ and $\|\alpha\| = \|t^\delta\|$, for some $\gamma, \delta \in Q$, $\gamma, \delta > 0$, and for suitable choice of n the condition (**) would be violated. On the other hand, if we choose $\alpha, \beta \in \mathbb{R}_2$ with $\text{ord}(\alpha) = (1, 0)$ and $\text{ord}(\beta) = (0, 1)$ then $\sum a_k z^k \in \mathbb{R}_2((z))$ satisfies the statement on \mathbb{R}_2.

This process can clearly be iterated to give, in the notation of Section 4, the following proposition.

Proposition 5.1. For each m there is a sentence of \mathcal{L}_{Q^m} that is true in \mathbb{R}_m but is not satisfiable in any o-minimal expansion of $\mathbb{R} = \mathbb{R}_0, \mathbb{R}_1, \ldots, \mathbb{R}_{m-1}$.
Acknowledgements. The second and third authors thank the University of Leuven and the Newton Institute (Cambridge) for their support and hospitality.

References

R. Cluckers
Katholieke Universiteit Leuven
Departement Wiskunde
Celestijnenlaan 200B
B-3001 Leuven
Belgium

Current address:
École Normale Supérieure
Département de mathématiques et applications
45 rue d’Ulm
75230 Paris cedex 05
France
cluckers@ens.fr
www.wis.kuleuven.ac.be/algebra/Raf/

L. Lipshitz
Department of Mathematics
Purdue University
150 North University Street
West Lafayette, IN 47907-2067
USA

lipshitz@math.purdue.edu
www.math.purdue.edu/~lipshitz/

Z. Robinson
Department of Mathematics
East Carolina University
Greenville, NC 27858-4353
USA

robinzonz@mail.ecu.edu