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Abstract

We study Grothendieck rings (in the sense of model theory) of fields, extending previous work of
Haskell and the author in [R. Cluckers, D. Haskell, Bull. Symbolic Logic 7 (2) (2001) 262—-269]. We
construct definable bijections from the line to the line minus one point in the language of rings for
valued fields like fields of formal Laurent series oyeadic numbers and fields of formal Laurent
series over local fields of strictly positive characteristic. It follows that the Grothendieck rings of
these fields are trivial.
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1. Introduction

Recently, the Grothendieck ring of a structure, in the sense of logic, has been introduced
in [3] as well as in [4]. The Grothendieck ring of a model-theoretical structure is built up as
a quotient of the definable sets by definable bijections (see below), and thus, depends both
on the model and the language. Ka{, £) a structure with the signature of a language
L we write Ko(M, L) for the Grothendieck ring ofM, £). In [2] and [7], the following
explicit calculations of Grothendieck rings of fields are made:

Ko(R, Lying) is isomorphic tdz,
KO(Qp, Ering) is triViaI,
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with Lyng the languagé+, —, -, 0, 1). In [3] and [4] it is shown that the Grothendieck
ring Ko(C, Liing) is extremely big and complicatedko(C, Lring), and many other
Grothendieck rings, are not explicitly known.

Any Euler characteristic (in the sense of [2] or [4]), defined on the definable sets,
factors through the natural projection of definable sets into the Grothendieck ring, and,
in this sense, to know a Grothendieck ring is to know a universal Euler characteristic.
Nevertheless, it happens that a Grothendieck ring is trivial.

The triviality of a Grothendieck ring can be proven by constructing a definable bijection
from X to X \ {a}, whereX is a definable set anfl:} a point onX. In Section 2, we
give two criteria for valued fields to have a trivial Grothendieck ring and for the existence
of definable bijectionk — K> = K \ {0}, see Propositions 2 and 3. These criteria are
extensions of criteria given in [2].

In this paper we define a subgroB K, £) of Z, associated to a fiel® and a language
L (see Section 2); this group reflects elementary arithmetical properties of the indices of
nth powers inK>* and of the number ofth roots of 1 inK*. Using the definition, it
follows immediately that, for example,

H(R, Liing) IS Z,
H(st ;Cring) iS Z, and
H (C, Liing) is {0}.

In Section 1.2 we explain iterated Laurent series fields. In the present paper we prove the
following application of the above mentioned criteria:

Theorem 1. Let L be eitherQ,, or a finite field extension @, or F, ((¢)), whereF, is
the finite field withy = p! elements angh a prime. LetK be one of the field&, L((11)),
L((t1))((2)), L((t1))((t2))((t3)), and so on. TheKo(K, Lring) is trivial and there exists a
Liing-definablé bijection K — K *.3 Moreover, ifchark # 2, thenH (K, Lring) is Z.

1.1. Valued fields

Fix a field K. We call K a valued field if there is an ordered gro(@, +, <)* and a
surjective valuation map: K — G U {oco} such that

() v(x) =occifand onlyifx =0;
(i) v(xy)=v(x)+v(y)forallx,yeK;
@iii) v(x +y) = min{v(x),v(y)} forallx,y € K.

We write R for the valuation ring{x € K | v(x) > 0} of K, M for its unigue maximal
ideal,k for the residue field&R/M andR — k: x — x for the natural projection. We call

2 Here, as always, definable means definable with parameters.

3 Fork =L, this result is proven in [2].

4 Here, an ordered group is a totally ordered non-trivial abelian géspch thatr < y impliesx +z < y+z
forall x,y,zin G.
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a G-valued field. IfG has a minimal strictly positive element, we célldiscrete. Remark
that a minimal strictly positive element i necessarily is unique.

A valued field often carries an angular component map modulo(or angular
component map for short); itis a group homomorphismi€ — k>, extended by putting
aq0) = 0, and satisfying aa) = x for all x with v(x) = 0 (see [6]).

If the value group ofK is Z", andt,...,t, are field elements such thats) =
1,0,...,0),...,v(t,) =(0,...,0,1), there is a natural angular component mapke->
k given by acx) = (x iti’”) mod M for nonzerox with v(x) = (r1,...,r,). This
angular component map is canonical up to the choiag of

1.2. Iterated Laurent series fields

To provide the reader with examples of valued fields satisfying the conditions of several

results in the paper, we define iterated Laurent series fields by inductioh(lg}t) be the

field of (formal) Laurent series in the variabdeover L and letL((r1)) ... ((t,—1))((ty))

be the field of (formal) Laurent series in the variahl@verL((t1)) ... ((t,—1)). On afield
L((r1))...((ty)) we can put many valuations, for example the valuatiptaking values

in the lexicographically ordered-fold product ofZ, defined as follows. I = 1, then we
putvi(x) = s € Z wheneverx = ng asti with a; # 0 anda; € L. For generah, and

X = Zi% ast,, whereay # 0 anda; € L((11)) ... ((ti—1)), We putv, (x) = (s, vp—1(as)) €

7. Remark that the valuation ring with respect to the valuatipis Henselian.

1.3. Grothendieck rings

Let £ be a language and lef be a model forl with at least two elements. For
L-definable setX c M™,Y ¢ M", m,n > 0, aL-definable bijectiorX — Y is called an
L-isomorphism and we writ& =, Y, or X = Y if the context is clear, whenevér andY
areL-isomorphic. (By definable we mean definable with parameters.) For defikidnel
Y, we can choose disjoint definable s&ts Y’ c K™ for somem’ > 0, such that¥ = X’
andY = Y’, and then we define thdisjoint unionX LU ¥ of X andY up to isomorphism as
X' UY’. By the Grothendieck groufio(M, £) of the structuré M, £) we mean the group
generated by symbolg ], for A a£-definable set, with the relationd] =[A"]if A=, A’
and[A] = [B] + [C] if A is the disjoint union ofB andC. The groupKo(M, £) carries
a multiplicative structure induced A x B] = [A][B], whereA x B is the Cartesian
product of definable sets. The so-obtained ring is called the Grothendieck ring and for a
L-definable sek we write[X] for the image ofX in Ko(M, L).

2. Calculationsof Grothendieck rings

Let K be a field andC an expansion ofying. We write P,,(K) or P, for the set ofnth
powers inkK *. Forn > 1 we put

mK)=t{xeK |x"=1} and s,(K)=[K*:P,(K)]

which is either a positive integer ov.
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Definition 1. Forn > 1 we put

sn(K)

(K, L) = r(K)

if the following conditions are satisfied

(1) su(K) < o0 and =& ¢ 7

ra(K)

(2) there exists a-definablenth root function. This means that there exists a definable
set/ P, C K* and a definable bijection

Y Pa(K) = /Py
such that(%/x)" = x for eachx € P,(K).

If one of the above conditions is not satisfied, we putK, £) = 1. We defineH (K, £)
as the subgroup & generated by the numbers

(K, L)—1
foralln > 1.

Remark that if£’ is an expansion of, then there is a group inclusiaki (K, £) —
H(K, L. As an example, we remark that(R((7)), Liing) = Z, and the same holds for
fields of iterated Laurent series over

Let £y = (Lring, R) be the language of rings with an extra 1-ary relation symbol
which corresponds to a valuation ring inside the model. If the model is a valued field, we
take the natural interpretations.

Proposition 1. Let K be a field andC an expansion oLying. For each positive number
m € H(K, L), there exists &-definable bijection

m+1
|_| K*— K*,
i=1
and thus, inKo(K, £),
m[KX] =0.

Moreover, ifK is a valued field andC is an expansion of,, there exists aC-definable
bijection

m+1

|_|(R\{0}) = R\ {0},

i=1



696 R. Cluckers / Journal of Algebra 272 (2004) 692—700

and thus, inKg(K, £),
m[R\ {0}] =0.

Proof. We first prove thak * = Uf;lKX forall A, =A, (K, L),n>1.If A, = 1thereis
nothing to prove, so supposg > 1. Remark that for each € K* and each definable
set A C K there is aL-isomorphismxA = A. With the notation of Definition 1, the
setsx /P, form a partition of K> whenx runs over thexth roots of unity. This gives
LI, ¥/P, = K*. SinceK * is the disjoint union of all cosets d¥, inside K *, we find
LI, P, = K*. Combining with the isomorphism, = /P, we calculate:

Sn Sn An

'n An
KX;|_|P,1;|_|(VF,,;|_|(|_|(VF,,) =| |k~
i=1 i=1 i=1\i=1 i=1

wheres, = s,(K) andr, = r,(K). Now letm > 0 be in H(K, £) and letn > 1 and
s > 0 be integers. By what we just have shown, we can gdé- 1 disjoint copies of
K* to | [{_ K*, in the sense that[\_, K> = | [[*2"~1 k<. Similarly, if s > 3, — 1,
we can subtract, — 1 disjoint copies ok * from | |'_; K*, to be precise] [_; K* =
j’;j”*l K. The proposition follows since the numbeys— 1 generated (K, £).
If £is an expansion of,, we have the same isomorphisms and the same arguments for
R\ {0} instead ofK >, working with R N P, andR N /P, instead ofP, and/P,. O

Definition 2. Let R be a valuation ringM its maximal ideal and let adk — k be an
angular component map moduld, wherek is the residue field ok. We define the set
R as

RY ={xeR|adx)=1}.

The setR™D is not necessarily definable in the langudggg, nevertheless, it is always
definable in languages of Pas [5], since languages of Pas contain an angular component
map. At any rate, iRV is definable in some languagiewe have the following criterion.

Proposition 2. Let K be a valued field. Suppose that the value group is discrete and let
7 € K have minimal strictly positive valuation. Létbe an expansion of, and letacbe
an angular component mag — k. If R is £-definable and4 (K, £) = Z, then

Ko(K,£)=0, K=,K*, and RZ=,R\{O}.

Proof. We first prove thaKo(K, £) = 0. We may suppose that@o = 1, otherwise we
could replacer by 7 /a wherea is an arbitrary element with(a) = 0 and a€a) = ad(rr).
The following is aL-isomorphism

x€ER—1+mx,

RURD — RD: {
xeRYD > 7x.
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This implies, inKo(K, £), that[R]+ [RP] = [R™DV], and thus after cancellatiofpR] = 0.
By Lemma 1 and becaus® (K, £) = Z, also[R \ {0}] = 0. The following calculation
impliesKo(K, £) =0:

0=[R]=[R\{0}]+[{0}] =[{0}] =1.

We havel{0}] = 1 becaus¢{0}] is the multiplicative unit inKo(K, £).

Next we proveR = R \ {0}, by taking translates and applying homotheties to
the occurring sets. We make all occurring disjoint unions explicit. Wyitefor the
isomorphism

fr:14+72(R\{0}) = 72(R\ {0}) UL+ (R \ {0}),

given by Lemma 1; it is an isomorphism from one copyrof {0} onto two disjoint copies
of R\ {0}. Define the functionf, on72R U 4+ 7°RD by

2 21
f2:m?RUR +72RD - 7 4+ 7?RWD:; {ﬂ ¥ il ),
n+n2x»—>n+n2(nx),

then f> is an isomorphism from the disjoint union &fandR™® to a copy ofR™V. Finally,
we find £-isomorphisms:

fi(x) if x el+ 73R\ {0},
f3R—>R\{O}3x'—>{f2(x) if xen?RUn +n2RD,
X else

and

K-> K" x— {f(x) It x€R,
X else.

Proposition 2 immediately yields the triviality of the Grothendieck ring&gfand of
IF, ((¢)) with characteristic different from 2, see [2].

Proposition 2 can also be applied to fields of iterated Laurent seriesRyvéke
R((r1)) ... ((t)), together with for example a language of Pas [5].

In case thatH (K, L) is different fromZ, we formulate another criterion, namely
Proposition 3; it is a generalization of Theorem 1 of [2] and the proof is similar to the
proof of Theorem 1 of [2].

Proposition 3. Let K be a valued field. Suppose that the value group is discrete and let
7 € K have minimal strictly positive valuation. L€tbe an expansion afy and letacbe
an angular component mag — k. If R is £-definable, then

Ko(K,£)=0, K?=,Kk*\{(0,0)}, and R?>=. R?\{(0,0)}.
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Proof. We first prove thatko(K, £) = 0. As above we may suppose thatrac= 1 and
we have aC-isomorphism

RURW® =, rD

which implies tha{R] = 0 in Ko(K, £).
We argument that the disjoint union of two copies(& \ {0})? is L£-isomorphic to
(R \ {0})? itself. Define the sets

X1={(x,y) € (R\{0})* | v(x) < v(y)},
Xz ={(x,y) € (R\{0)* | v(x) > v(y)},

thenX1, X» form a partition of(R \ {0})2. The isomorphisms

(R\{0})? = X1: (x.y) > (x,x),
(R\{0})® = X2: (x,y) > (mxy, ),

imply that (R \ {0}))2 U (R \ {0})? is isomorphic toX1 U X, which is exactly(R \ {0})2.
After cancellation, it follows that(R \ {0})2] = 0.

Since O=[R] =[R \ {O}] + [{O}] = [R \ {0}] + 1 we have[R \ {0}] = —1. Together
with 0=[(R \ {0})?] = [R \ {0}]? this yields 1= 0, S0Ko(K, L) is trivial.

Combining these isomorphisms and taking appropriate disjoint unions iRSide/e
can find an isomorphism fromR? to itself minus a point. For details of this construction,
we refer to the proof of [2, Theorem 1].0

Proposition 3 can, for example, be applied to valued fields with angular component map
of strictly positive characteristic, together with a language of Pas. Since such fields often
allow a definable injectiork? — K, also a definable bijectio — K * can often be
obtained (the proof below exhibits this technique).

The value group’ of a valued fieldK is always torsion-free. One can also prove that
if G is finitely generated, thew is isomorphic (as an ordered group) Z8 with the
lexicographical order, for some > 0; to see this first prove that the valuation group is
discrete, and then use induction on the number of generators, by modding out modulo
t7 wheret is the least strictly positive element. We prove the following generalisation of
Theorem 1:

Theorem 2. Let K be a Henselian valued field with a finitely generated value group
and a finite residue field, then the valuation ring fsng-definable, the Grothendieck
ring Ko(K, Lring) is trivial, and there existling-definable bijectionsk — K* and

R — R\ {0}. Moreover, ifcharK # 2, thenH (K, Lying) is Z.

Proof. We will give a proof in the case that the residue fieldkofs F, with p a prime; the
other cases are similar. By the remark above we may suppose that the valuatidn*
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takes values it; = Z", n > 0, with lexicographical order. Let, .. ., ¢, be theZ-module
basis(1,0,...,0),...,(0,...,0,1) of G. Lets; be an element oK fori =1,...,n such
thatv(z;) = ¢;. By Hensels lemma, the valuation riljcan be described by

R=|xeK|1+nx?e PyK) &1 +1x?e Py(K) & - &1 +t,x% € Py(K)}
if p+#2and by
R={xeK|1l+nx3ePy(K)& --&1+1,x%e P3(K)}

if p=2.HenceR is Liing-definable. WriteM for the maximal ideal oR. Let ac: K —
F, be the angular component defined byxac= [T, ""x mod M for nonzerox with
v(x) = (r1,..., ). The setR® = {x € R | adx) = 1} is Lying-definable since it is the
union of the sets

[ 4 Prak)
i

forr;=0,...,p—2andi=1,...,n.

Suppose now that ch&r # 2. Using Hensel's lemma and the theory of finite fields,
one can calculate the numbetgK) ands, (K) for each prime numbey different from
chark, and one finds that, (K)/r,(K) is a positive power ofy. Further, using the
definable angular component and Hensels lemma, one can check thatg#kiropts is
Liing-definable. It follows that the generatby — 1 of H(K, Lying) is odd andr, — 1 is
even for each prime different from chak’, and thusH (K, Liing) = Z. Now we can use
Proposition 2, to find the desiref}ing-definable bijections and to find th&o (K, Lring) iS
trivial. This proves the theorem when chiée 2.

If charK = 2, we use Proposition 3 to find th&ly (K, Lring) is trivial and to find a
Liing-definable bijection

g1:R?— R*\ {(0,0)}.
The following is Lring-definable:
g21R2—> R: (x,y)|—>x2+t,,y2.

Moreover,g» is injective because it is a group homomorphism with trivial kernel, and
hence, we can define th&ing-isomorphism

¢ R R x> { g281(8; " () if x € g2(R?),
x else

This finishes the proof. O
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Remark 1. In [1] itis proven that for any infiniteing-definable subset of Q, there is a

Liing-definable bijectiornX’ — pr with I the dimension ofX, and similarly for finite field
extensions of),. The analogue questions are open for the other fields in the statement of
Theorems 1 and 2.
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