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Abstract

In [R. Cluckers, Classification of semi-algebraic sets up to semi-algebraic bijection, J. Reine Angew.
Math. 540 (2001) 105–114], it is shown that a p-adic semi-algebraic set can be partitioned in such a way
that each part is semi-algebraically isomorphic to a Cartesian product

∏l
i=1 R(k) where the sets R(k) are

very basic subsets of Qp . It is suggested in [R. Cluckers, Classification of semi-algebraic sets up to semi-
algebraic bijection, J. Reine Angew. Math. 540 (2001) 105–114] that this result can be adapted to become
useful to p-adic integration theory, by controlling the Jacobians of the occurring isomorphisms. In this paper
we show that the isomorphisms can be chosen in such a way that the valuations of their Jacobians equal
the valuations of products of coordinate functions, hence obtaining a kind of explicit p-adic resolution of
singularities for semi-algebraic p-adic functions. We do this by restricting the used isomorphisms to a few
specific types of functions, and by controlling the order in which they appear. This leads to an alternative
proof of the rationality of the Poincaré series associated to the p-adic points on a variety, as proven by Denef
in [J. Denef, The rationality of the Poincaré series associated to the p-adic points on a variety, Invent. Math.
77 (1984) 1–23].
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1. Introduction

We give an alternative, selfcontained proof of the main theorem of [3] by Denef on the ratio-
nality of the Poincaré series associated to the p-adic points on a variety. As one of the two proofs
given in [3], it uses p-adic cell decomposition (a selfcontained proof of which is given in [4]),
but it uses almost no p-adic integration theory. Instead, our approach uses the rectilinearization
result proven in this paper. This result refines a similar rectilinearization result of [1] which says
that any semi-algebraic p-adic set can be partitioned into finitely many parts each of which is
semi-algebraically isomorphic to a Cartesian power of basic subsets Z

(k)
p of Qp , where Z

(k)
p is

the set of p-adic integers (of any nonnegative order) having coefficients 1,0, . . . ,0 in p-adic ex-
pansion, with k − 1 zeros, see (1). The rectilinearization result of this paper improves this result
of [1] by controlling the order of the Jacobian of the occurring isomorphisms. Namely, the order
of the Jacobian equals the order of a monomial with integer powers. Since by [1] also the norm
of the pullback of given semi-algebraic functions is the norm of a monomial, we can pullback
p-adic semi-algebraic integrals to simpler p-adic integrals, consisting of an integrand which is
(the norm of) a monomial integrated over a Cartesian power of some Z

(k)
p . Since the measure

of Z
(k)
p is easily calculable, since integrating a monomial over a Cartesian product of Z

(k)
p is a

product of integrals of monomials in one variable over the factors Z
(k)
p , the pulled back integral

is trivial what concerns integrability as well as its calculation. Since the Denef–Serre Poincaré
series as well as the other Poincaré series of [3] can be written as a semi-algebraic p-adic integral
in the form of (7), cf. [3], the rationality of these series follows by calculating the pullback of
this integral along a rectilinearization.

1.1. Notation and terminology

Let p denote a fixed prime number, Qp the field of p-adic numbers and K a fixed finite field
extension of Qp . For x ∈ K let v(x) ∈ Z ∪ {+∞} denote the valuation of x. Let R = {x ∈ K |
v(x) � 0} be the valuation ring, and let qK denote the cardinality of the residue field of K . Write
N for the nonnegative integers and N0 for N \ {0}. Put K× = K \ {0} and for n ∈ N0 let Pn be
the set {x ∈ K× | ∃y ∈ K: yn = x}. We call a subset of Kn semi-algebraic if it is a Boolean
combination (i.e. obtained by taking finite unions, complements and finite intersections) of sets
of the form {x ∈ Km | f (x) ∈ Pn}, with f (x) ∈ K[X1, . . . ,Xm]. The collection of semi-algebraic
sets is closed under taking images under projections Km → Km−1; further we have that sets of
the form {x ∈ Km | v(f (x)) � v(g(x))} with f (x), g(x) ∈ K[X1, . . . ,Xm] are semi-algebraic
(see [4] and [5]). A function f :A → B is semi-algebraic if its graph is a semi-algebraic set; if
further f is a bijection, we call f an isomorphism. By a finite partition of a semi-algebraic set
we mean a partition into finitely many semi-algebraic sets.

Let π be a fixed element of R with v(π) = 1, thus π is a uniformizing parameter for R. For a
semi-algebraic set X ⊂ K and k > 0 we write

X(k) = {
x ∈ X

∣∣ x 	= 0 and v
(
π−v(x)x − 1

)
� k

}
, (1)

which is semi-algebraic (see [4, Lemma 2.1]); X(k) consists of those points x ∈ X which have a
p-adic expansion x = ∑∞

i=s aiπ
i with as = 1 and ai = 0 for i = s + 1, . . . , s + k − 1.

We recall a form of Hensel’s lemma and a corollary.



Author's personal copy

R. Cluckers, E. Leenknegt / Journal of Number Theory 128 (2008) 2185–2197 2187

Lemma 1 (Hensel). Let f (t) be a polynomial over R in one variable t , and let α ∈ R, e ∈ N.
Suppose that v(f (α)) > 2e and v(f ′(α)) � e, where f ′ denotes the derivative of f . Then there
exists a unique ᾱ ∈ R such that f (ᾱ) = 0 and v(ᾱ − α) > e.

Corollary 2. (See [1].) Let n > 1 be a natural number. For each k > v(n), and k′ = k + v(n) the

function K(k) → P
(k′)
n : x �→ xn is an isomorphism.

The following definitions are central.

Definition 3. We say that a semi-algebraic function f :A ⊆ Kn → K satisfies condition (2) (with
constants μi , β) if we have constants μi ∈ Z, β ∈ K such that each x = (xi) ∈ A satisfies xi 	= 0
if μi < 0 and

v
(
f (x)

) = v

(
β

∏
i

x
μi

i

)
. (2)

We say that a semi-algebraic function g from an open set B ⊆ Kn → Kn satisfies condition (3)
(with constants μi , β) if g is C1 on B and there exist constants μi ∈ Z, β ∈ K such that each
x = (xi) ∈ B satisfies xi 	= 0 if μi < 0 and

v
(
Jac

(
g(x)

)) = v

(
β

∏
i

x
μi

i

)
. (3)

Definition 4. Let f :X → Y be a semi-algebraic isomorphism. Say that the isomorphism f is of
type f0 when f equals an isomorphism of the following kind:

f0 :X ⊂ Kn → Y ⊂ Kn+1: x �→ (x1, . . . , xi−1,0, xi+1, . . . , xn)

for some n � 0.
Say that the isomorphism f is of type f1, respectively of type f2, tc or t , when X ⊂ Kn,

Y ⊂ Kn for some n � 0, and f equals an isomorphism of the following kind:

f1 :X → Y : x �→ (
α1x

a1
1 , . . . , αnx

an
n

)
,

f2 :X → Y : x �→
(

x1, . . . , xi−1, xi

∏
j 	=i

x
bj

j , xi+1, . . . , xn

)
,

tc :X → Y : x �→ (
x1, . . . , xi−1, xi + c(x1, . . . , xi−1), xi+1, . . . , xn

)
, or

t :X → Y : x �→ (x1 + c1, x2 + c2, . . . , xn + cn),

with ai, bj ∈ Z, ai < 0 implies xi 	= 0 for x ∈ X, bj < 0 implies xj 	= 0 for x ∈ X, αi, ci ∈ K ,
x = (x1, . . . , xn), c a semi-algebraic function which is moreover C1 in the case that X is open
in Kn, and such that for each j and each x ∈ X, cj = 0 or v(cj ) < v(xj ) holds.

Remark 5. If a function g = (g1, . . . , gm) :X ⊂ Kn → Y ⊂ Km is a composition of functions of
type f0, f1, f2, and t , then the component functions gi all satisfy condition (2).



Author's personal copy

2188 R. Cluckers, E. Leenknegt / Journal of Number Theory 128 (2008) 2185–2197

2. Rectilinearization with good Jacobians

Using cell decomposition in the form of Denef [3] or [4], the following can be easily derived,
cf. [1, Lemma 4], or [2].

Lemma 6. Let X ⊂ Km be semi-algebraic and bj :Km → K semi-algebraic functions for j =
1, . . . , r . Then there exists a finite partition of X s.t. each part A has the form

A = {
x ∈ Km

∣∣ x̂ ∈ D, v
(
a1(x̂)

)
�1 v

(
xm − c(x̂)

)
�2 v

(
a2(x̂)

)
, xm − c(x̂) ∈ λPn

}
,

and such that for each x ∈ A we have

v
(
bj (x)

) = 1

n
v
((

xm − c(x̂)
)μj dj (x̂)

)
,

with x̂ = (x1, . . . , xm−1), D ⊂ Km−1 semi-algebraic, the set A projecting surjectively onto D,
n > 0, μj ∈ Z, λ ∈ K , c, dj :Km−1 → K and ai :Km−1 → K× semi-algebraic functions, and
each �i either � or no condition. If λ = 0, we use the conventions μj = 0 and 00 = 1, and thus
v(bj (x)) = 1

n
v(dj (x̂)).

Moreover, D has the structure of a K-analytic manifold and the functions c, ai and dj are
K-analytic on D.

We can now state our main result. If l = 0, then
∏l

i=1 R(k) denotes the set {0}.

Theorem 7 (Rectilinearization with good Jacobians). Let X ⊂ Km be a semi-algebraic set and
bj :X → K semi-algebraic functions for j = 1, . . . , r . Then there exists a finite partition of X

such that for each part A we have constants l ∈ N, k ∈ N0, and an isomorphism

f :
l∏

i=1

R(k) → A,

such that the functions bj ◦f satisfy condition (2). Moreover, for each part A with isomorphism f

with l = m we can ensure that f satisfies condition (3).

The first author proved a similar result in [1, Proposition 3], but without condition (3) for the
isomorphisms f . Theorem 7 can be understood as an embedded resolution of singularities for
the p-adic semi-algebraic functions bj . We will prove Theorem 7 using the following stronger
result.

Theorem 8 (Rectilinearization with basic functions). With the notation and in the conclusion of
Theorem 7, we can moreover ensure that for each part A we have an isomorphism of the form

f :
l∏

i=1

R(k) → A: x �→ (Tc ◦ g)(x),

with g a composition of bijective maps of the types f0, f1, f2, t , and Tc a composition of functions
of type tc .
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Proof of Theorem 8. Recall that X ⊂ Km. We work by induction on m.
First we note a generality. Say that a semi-algebraic function h :B ⊂ K� → K satisfies con-

dition (4) when there are n > 0, β ∈ K and μi ∈ Z such that

v
(
h(x)

) = 1

n
v

(
β

∏
i

x
μi

i

)
for all x in B, (4)

and such that xi 	= 0 for all x ∈ B when μi < 0. When moreover B = ∏�
i=1 R(k) for some k, then

condition (4) for h implies that h satisfies condition (2). Indeed, since h takes values in K and K

has Z as value group, and since v(xi) runs over N, μi and v(β) must be divisible by n.
Let X ⊂ K and bj :X → K be semi-algebraic functions, j = 1, . . . , r . By Lemma 6 there is

a partition such that each part A is of the form

A = {
x ∈ K

∣∣ v(a1) �1 v(x − c) �2 v(a2), x − c ∈ λPn

}
,

and such that for each x ∈ A we have v(bj (x)) = 1
n
v(βj (x − c)μj ), with c,λ,βj ∈ K , ai ∈ K×,

n > 0, μj ∈ Z, and each �i either � or no condition. If A is a singleton (that is, λ = 0), then
the desired isomorphism {0} = ∏0

i=1 R(1) → A is easily constructed. Now assume that λ 	= 0.
Since we build the isomorphisms f in the reverse order (that is, beginning with an isomorphism
onto A), we first use a translation of type tc,

t̄c :Ac=0 → A: x �→ x + c

with

Ac=0 := {
x ∈ K

∣∣ v(a1) �1 v(x) �2 v(a2), x ∈ λPn

}
.

Note that v(bj ◦ t̄c(x)) = 1
n
v(βjx

μj ) for each x ∈ Ac=0, hence the functions bj ◦ t̄c satisfy con-
dition (4).

We will now reduce to the case where �1 is �, thus to sets of the form B:

B = {
x ∈ K

∣∣ v(a1) � v(x) �2 v(a2), x ∈ λPn

}
, (5)

with �2 either � or no condition. If �1 is no condition and �2 is �, we can apply the isomor-
phism

f
(1)
1 :

{
x ∈ K

∣∣∣ v

(
1

a2

)
� v(x), x ∈ 1

λ
Pn

}
→ Ac=0: x �→ 1

x
,

and replace μj by −μj . When both �1 and �2 are no condition, the set Ac=0 can be partitioned
in parts

A1
c=0 = {

x ∈ Ac=0
∣∣ 0 � v(x)

}
,

A2
c=0 = {

x ∈ Ac=0
∣∣ v(x) � −1

}
.
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The set A1
c=0 now has the desired form. For the set A2

c=0 we can proceed as in the previous case

and use an isomorphism similar to f
(1)
1 .

We have thus reduced to the case that we have a partition of X in parts A such that for each
part there exists an isomorphism fB from a set B as in (5) onto A, with fB a composition of an
isomorphism of type tc with an isomorphism of type f1, and such that clearly condition (4) holds
for the functions bj ◦ fB .

Case 1: �2 is � in (5). By Hensel’s lemma we can partition B into finitely many parts of
the form y + πsR for some fixed s > v(a2) and with v(a1) � v(y) � v(a2) for each y (see
Example 9). For each such part there is a finite partition y + πsR = ⋃

γ∈� Bγ ∪ {y}, with Bγ =
y + πsγR(1) and v(γ ) = 0 for each γ . Now the functions

fγ :R(1) → Bγ : x �→ y + πsγ x

are isomorphisms between R(1) and the sets Bγ . Note that fγ equals t̄ ◦ f
(2)
1 with

f
(2)
1 :x �→ πsγ x and t̄ :x �→ x + y,

where v(t̄(x)) = v(y) since v(y) < s and x ∈ πsγR(1).
Put f := fB ◦ fγ . Then f is as desired and the functions bj ◦ f clearly satisfy condition (4)

and thus also (2) by the generality in the beginning of the proof. This proves Case 1.

Case 2: �2 is no condition in (5). The map

f
(3)
1 :R ∩ λ′Pn → B: x �→ a1x,

with λ′ = λ/a1 is an isomorphism. Choose k > v(n) and put k′ = k + v(n). Let R ∩ λ′Pn =⋃
γ Cγ be a finite partition, with Cγ = γ (R ∩ P

(k′)
n ) and 0 � v(γ ) < n. Now we have that the

map f
(γ )

1 :R(k) → Cγ : x �→ γ xn is an isomorphism by Corollary 2. Let gγ be the semi-algebraic

function f
(3)
1 ◦ f

(γ )

1 , which is an isomorphism from R(k) onto a semi-algebraic set Bγ ⊂ B .
The sets Bγ form a finite partition of B . This induces a finite partition of X in parts Aγ and
isomorphisms f = fB ◦ gγ :R(k) → Aγ .

Clearly the bj ◦ f satisfy condition (2), since they satisfy condition (4). Since gγ is a compo-
sition of isomorphisms of type f1, f is as desired. This proves Case 2 and thus the case m = 1 is
proved.

Now let m > 1. We will show that we can reduce to the case described in Eq. (6) below. The
theorem then follows by Lemma 11. Using Lemma 6 and its notation, we find a finite partition
of X such that each part A has the form

A = {
x ∈ Km

∣∣ x̂ ∈ D, v
(
a1(x̂)

)
�1 v

(
xm − c(x̂)

)
�2 v

(
a2(x̂)

)
, xm − c(x̂) ∈ λPn

}
,

and such that for each x ∈ A we have v(bj (x)) = 1
n
v((xm − c(x̂))μmj dj (x̂)), with μmj ∈ Z.
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First we use a translation t
(m)
c :Ac=0 → A: x �→ (x1, . . . , xm + c(x̂)) to get rid of c(x̂), as in

the case m = 1. If we apply the induction hypotheses to the set D ⊂ Km−1 and the functions a1,
a2, dj , we get a partition of D in parts D̃ and functions

f̃ :
l∏

i=1

R(k) → D̃: (x1, . . . , xl) �→ (T̃c ◦ g̃)(x1, . . . , xl),

with T̃c a composition of functions of type tc and g̃ a composition of functions of types f0, f1,
f2, t . This induces a finite partition of Ac=0, such that for each part Ãc=0 there is an isomorphism
of the form

f̃ ′ :B → Ãc=0: x �→ (
f̃ (x1, . . . , xl), xl+1

)
.

Here B is a set of the form

B =
{

x ∈
l∏

i=1

R(k) × λPn

∣∣∣ v

(
α1

l∏
i=1

x
ηi

i

)
�1 v(xl+1) �2 v

(
α2

l∏
i=1

x
εi

i

)}
.

If we compose the functions f̃ ′ with the translation t
(m)
c , we obtain isomorphisms of the form

f = t (m)
c ◦ f̃ ′ :B → AB : (x1, . . . , xl, xl+1) �→ (

(T̃c ◦ g̃)(x1, . . . , xl), xl+1 + c(x1, . . . , xl)
)

between sets B and sets AB ⊂ X. The sets AB form a finite partition of X. Clearly the bj ◦ f

satisfy condition (4). We will show that we only need functions of type f0, f1, f2 and t to
rectilinearize B . Thus the final isomorphisms

∏
R(k) → A will have the form x �→ (Tc ◦ g)(x),

where every translation contained in g is of type t , and Tc is a composition of functions of type tc.
If λ = 0, then B = ∏l

i=1 R(k) × {0}. In this case our isomorphism has the form

l∏
i=1

R(k) → A: x �→ (Tc ◦ g ◦ f0)(x).

Recall that by Lemma 6, α1 	= 0 	= α2. From now on suppose that λ 	= 0.
Analogously as for m = 1 we may suppose that �2 is either � or no condition and �1 is the

symbol � (possibly after partitioning or applying x �→ (x1, . . . , xl,1/xl+1)).
Choose k̄ > v(n) and put k′ = k̄ + v(n). We may suppose that k′ > k, so we have a finite

partition B = ⋃
γ Bγ with γ = (γ1, . . . , γl+1) ∈ Kl+1, 0 � v(γi) < n and

Bγ = {
x ∈ B

∣∣ xi ∈ γiP
(k′)
n , for i = 1, . . . , l + 1

}
.

Now we have isomorphisms

fγ :Cγ → Bγ : x �→ (
γ1x

n
1 , . . . , γl+1x

n
l+1

)
,
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with

Cγ =
{

x ∈
(

l∏
i=1

R(k̄)

)
× K(k̄)

∣∣∣ v

(
α′

1

l∏
i=1

x
ηi

i

)
� v(xl+1) �2 v

(
α′

2

l∏
i=1

x
εi

i

)}
,

for appropriate choices of α′
i ∈ K . Put f̄ = f ◦ fγ . Clearly, the bj ◦ f̄ satisfy condition (4). Put

νi = εi − ηi , β = α′
2/α

′
1. Then the following is an isomorphism

Dγ → Cγ : x �→
(

x1, . . . , xl, α
′
1xl+1

l∏
i=1

x
ηi

i

)
,

with Dγ = {x ∈ ∏l+1
i=1 R(k̄) | v(xl+1) �2 v(β

∏l
i=1 x

νi

i )}.
The case that �2 is no condition is now trivial. Summarizing, it follows that we can reduce to

the case of an isomorphism

f :E =
{

x ∈
l+1∏
i=1

R(k̄)
∣∣∣ v(xl+1) � v

(
β

l∏
i=1

x
νi

i

)}
→ X (6)

with β 	= 0, k̄ > 0, and νi ∈ Z, such that each bj ◦ f satisfies condition (2), and such that the

projection of E to the first l coordinates is surjective, onto
∏l

i=1 R(k̄) (this surjectivity comes
from the original application of Lemma 6 in the beginning of the case m > 1). It follows by this
surjectivity that v(β) � 0 and that νi � 0 for each i, in (6).

Use Lemma 11 to obtain a partition of E in parts Ei and isomorphisms φi :
∏

R(k) → Ei .
The φi are composed of functions of types f0, f1, f2, t and the components of φi all satisfy
condition (2). Therefore each bj ◦ f ◦ φi will satisfy condition (2). This finishes the proof of
Theorem 8. �
Example 9. X = {x | x ∈ Pn, v(x) = 0} is a finite union of sets of the form y + πsR for some
fixed s > 0 and with v(y) = 0 for each y. Indeed, for s, take an odd number such that s �
2v(n). For the numbers y, take the (different) elements of the set X mod πs . Then obviously
X ⊂ ⋃

y(y+πsR), and all the sets in this union are disjoint. Now fix y and suppose x ∈ y+πsR.
Since v(x) = v(y), we only have to prove that x ∈ Pn. We know that y ∈ Pn, so there exists
b ∈ K× such that y = bn. Put f (X) := Xn − x, then by our choice of s, f (b) ≡ 0 mod πs and

f ′(b) 	≡ 0 mod π
s+1

2 . So by Hensel’s lemma, there exists b′ ≡ b mod π
s+1

2 such that x = (b′)n.
[Likewise, the set X = {x | x ∈ λPn, v(x) = a}, is a finite union of sets of the form y + πsR

for some fixed s > 0 and with v(y) = a for each y.]
It is then an exercise, cf. the proof of Theorem 8, to find a partition and isomorphisms as in

Theorem 8 for the set X.

Remark 10. In Theorem 8 it is also possible to change the order such that all functions of type f0
are applied first among the functions of type f0, f1, f2, t . To do this, we need to slightly modify
the functions used in the proof of Theorem 8. We then get isomorphisms of the form

f :
l∏

i=1

R(k) → A: x �→ (Tc ◦ g ◦ F0)(x),
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with Tc a composition of functions of type tc , F0 a composition of functions of type f0 and g a
composition of functions of type f1, f2, t .

Lemma 11. Let E be a set of the form

E :=
{

x ∈
m∏

i=1

R(k)
∣∣∣ v(xm) � v

(
β

m−1∏
i=1

x
νi

i

)}
,

where β 	= 0, k ∈ N0, νi ∈ N, with v(β) � 0. Then there exists a finite partition of E such that for
each part A there is an isomorphism of the form

l∏
i=1

R(k) → A: x �→ (g ◦ F0)(x)

with l � m, g a composition of functions of types f1, f2, t , and F0 a composition of functions of
type f0.

Proof. We work by induction on m.

Case m = 1. We can partition E = {x ∈ R(k) | v(x) � v(β)} as

E =
⋃
s

{
x ∈ R(k)

∣∣ v(x) = s
}
,

with s ∈ {0, . . . , v(β)}. Now proceed as for Case 1 for m = 1 in the proof of Theorem 8.

Case m > 1. Note that there are no conditions on xi if νi = 0. Hence, we may suppose that
ν1 > 0. We first prove the proposition when ν1 = 1. We can partition E into parts E1 and E2,
with

E1 =
{

x ∈ E

∣∣∣ v(xm) � v

(
β

m−1∏
i=2

x
νi

i

)}
,

E2 =
{

x ∈ E

∣∣∣ v

(
β

m−1∏
i=2

x
νi

i

)
< v(xm)

}

=
{

x ∈
m∏

i=1

R(k)
∣∣∣ v

(
β

m−1∏
i=2

x
νi

i

)
< v(xm) � v

(
βx1

m−1∏
i=2

x
νi

i

)}
.

Since v(β
∏m−1

i=2 x
νi

i ) � v(x1β
∏m−1

i=2 x
νi

i ) for x ∈ E1, it follows that

E1 = R(k) ×
{

(x2, . . . , xm) ∈
m∏

i=2

R(k)
∣∣∣ v(xm) � v

(
β

m−1∏
i=2

x
νi

i

)}
,

and the lemma follows for E1 by the induction hypothesis.
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For E2, let Dm−1 be the set

Dm−1 =
{

(x2, . . . , xm) ∈
m∏

i=2

R(k)
∣∣∣ v

(
β

m−1∏
i=2

x
νi

i

)
< v(xm)

}
.

We may suppose that β ∈ K(k). Then, the map

R(k) × Dm−1 → E2: x �→
(

x1xm

β
∏m−1

i=2 x
νi

i

, x2, . . . , xm

)

is an isomorphism which is a composition of isomorphisms of type f1 and f2. Also

m∏
i=1

R(k) → R(k) × Dm−1: x �→
(

x1, . . . , xm−1,πβxm

m−1∏
i=2

x
νi

i

)

is an isomorphism which is a composition of isomorphisms of type f1 and f2. This proves the
lemma when ν1 = 1.

Suppose now that ν1 > 1. We prove that we can reduce to the case ν1 = 1 by partitioning and
applying appropriate power maps. Choose k̃ > v(ν1) and put k̃′ = k̃ + v(ν1). We may suppose
that k̃ � k, so we have a finite partition E = ⋃

α Eα , with α = (α1, . . . , αm) ∈ Km, v(α1) = 0,
0 � v(αi) < ν1 for i = 2, . . . ,m and

Eα = {
x ∈ E

∣∣ x1 ∈ α1R
(k̃), xi ∈ αiP

(k̃′)
ν1

for i = 2, . . . ,m
}
.

By Corollary 2 we have isomorphisms

fα :Cα → Eα: x �→ (
α1x1, α2x

ν1
2 , . . . , αmxν1

m

)
,

with Cα = {x ∈ ∏m
i=1 R(k̃) | v(xm) � v(β ′x1

∏m−1
i=2 x

νi

i )}, which are isomorphisms of type f1.
Here β ′ ∈ K× depends only on α. This reduces the problem to the case with ν1 = 1 and thus the
lemma is proved. �

To derive Theorem 7 from Theorem 8, we use three simple lemmas.

Lemma 12. Isomorphisms of type f1, f2, t and of type tc, from an open in Kn onto a subset
of Kn, satisfy condition (3).

Proof. With obvious notation,

Jacf1(x) = det

⎛
⎝α1a1x

a1−1
1 0

. . .

0 αnanx
an−1
n

⎞
⎠ =

n∏
i=1

αiaix
ai−1
i ,
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Jacf2(x) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
. . .

1
∗ ∗ ∗ ∏

i 	=j x
bj

j ∗ ∗ ∗
1

. . .

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∏
i 	=j

x
bj

j ,

and similarly for tc and t . �
Lemma 13. Let Tc :X ⊂ Km → Y ⊂ Km be a composition of isomorphisms of type tc, with X

open in Km. Then Tc satisfies condition (3).

Proof. Automatically Tc has the form

Tc(x) = (
x1 + c1, x2 + c2(x1), . . . , xm + cm(x1, . . . , xm−1)

)
for some C1 semi-algebraic functions ci . Now one can calculate JacTc . �
Lemma 14 (Compositions). Let g :X ⊂ Km → Km and T :Y ⊂ Km → Km be isomorphisms
with g(X) ⊂ Y . Write g = (g1, . . . , gm). If T and g satisfy condition (3) and the functions gi

satisfy condition (2), then the composition T ◦ g satisfies condition (3).

Proof. By condition (3) for T , there exist constants β , μi such that v(JacT (x)) = v(β
∏m

i=1 x
μi

i ).
By the chain rule,

v
(
Jac(T ◦ g)(x)

) = v
(
JacT |g(x) · Jacg(x)

)
= v

(
β

m∏
i=1

gi(x)μi Jacg(x)

)
.

The lemma now follows from condition (3) for g and condition (2) for the gi . �
Proof of Theorem 7. By Theorem 8, there exists a finite partition of X in parts A such that for
each part, the isomorphism f has the form

f :
l∏

i=1

R(k) → A: x �→ (Tc ◦ g)(x),

with g a composition of isomorphisms of type f1, f2, f0, t and Tc a composition of isomorphisms
of type tc. We still have to prove that f satisfies condition (3) when l = m.

By Lemma 12, g is composed of functions which satisfy condition (3). Also, the component
functions of g satisfy condition (2), by Remark 5. Hence, by Lemma 14, g satisfies condition (3).
On the other hand, Tc satisfies condition (3) by Lemma 13. By Lemma 14, Tc ◦ g satisfies condi-
tion (3). �
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3. Application: Rationality of p-adic integrals

We give an alternative, simple and selfcontained proof of the following rationality result by
combining Theorem 7 with the basic fact that

∑∞
�=0 T � equals 1

1−T
for small T . Let |dx| be the

Haar measure on Km such that the measure of Rm equals 1.

Corollary 15 (Rationality). (See [3].) Let S ⊂ Km be a semi-algebraic set and f,g :S → K

semi-algebraic functions. If the following integral exists for s ∈ R, s � 0 (that is, if the integrand
is absolutely integrable for s sufficiently big), then

I (s) :=
∫
S

∣∣f (x)
∣∣s · ∣∣g(x)

∣∣|dx| (7)

is rational in q−s
K and the denominator of I (s) is a product of factors of the form (1 − q−sa−b

K )

with a, b ∈ Z, and (a, b) 	= (0,0).

Proof. By Theorem 7 and the change of variables formula for p-adic integrals, we may suppose
that S = ∏m

i=1 R(k) and that f (x) = β
∏

i x
μi

i and g(x) = γ
∏

i x
νi

i , for all x in S, with μi, νi ∈ Z

and β,γ ∈ K . We may suppose that β 	= 0 	= γ . Since the integral has become a product integral,
we may suppose that m = 1. In this case, we can write

I (s) =
∑
�∈N

∫
v(x1)=�, x1∈R(k)

∣∣βx
μ1
1

∣∣s∣∣γ x
ν1
1

∣∣|dx1|

= cq
−v(β)s
K

∑
�∈N

q
−(μ1s+ν1+1)�
K

with c = q
−k−v(γ )

K . By this calculation, the integrand is absolutely integrable for s � 0 if and
only if μ1 � 0 and μ1 > 0 when ν1 < 0. In this case I (s) equals

cq
−v(β)s
K

1 − q
−(μ1s+ν1+1)
K

,

which is as desired. �
Corollary 15 corresponds to the main rationality results of [3], namely Theorems 1.1, 3.2,

and 7.4 of [3], of which the rationality of the Denef–Serre Poincaré series (namely Theorem 1.1
of [3]) is a special case.

Remark 16. The advantage of our proof of Corollary 15 is that the rationality can be directly
derived from Theorem 7; the disadvantage is that the integrals cannot depend on parameters for
our proof. Other estimates, for example on the multiplicity of the poles of I (s) as in [3], can be
controlled with our method.
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