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1.1 Introduction

Though one can consider Motivic Integration to have quite satisfactory foundations in residue

characteristic zero after [9], [10] and [18], much remains to be done in positive residue characteristic.

The aim of the present paper is to explain how one can extend the formalism and results from [9]

to mixed characteristic.

Let us start with some motivation. Let K be a fixed finite extension of Qp with residue field Fq
and let Kd denote its unique unramified extension of degree d, for d ≥ 1. Let us write by Od the

ring of integers of Kd and fix a polynomial h ∈ O1[x1, · · · , xm]. For each d one can consider the

Igusa local zeta function

Zd(s) =

∫
Om

d

|h(x)|sd|dx|d,

with | |d and |dx|d the corresponding norm and Haar measure such that the measure of Od is 1

and such that |a|d for any a ∈ Kd equals the measure of aOd. Meuser in [20] proved that there

exist polynomials G and H in Z[T,X1, · · · , Xt] and complex numbers λ1, · · · , λt such that, for all

d ≥ 1,

Zd(s) =
G(q−ds, qdλ1 , · · · , qdλt)

H(q−ds, qdλ1 , · · · , qdλt)
.

Later Pas [22], [23] extended Meuser’s result to more general integrals. In view of [15] and [16], it

is thus natural to expect that there exists some motivic rational function Zmot(T ) with coefficients

in some localization of the Grothendieck ring GFq
of definable sets over Fq such that, for every

d ≥ 1, Zd(s) is obtained from Zmot(T ) by using the morphism GFq → Z counting rational points

over Fqd and letting T go to q−ds. The theory presented here allows to prove such a result (more

generally for h replaced by a definable function).

Another motivation for the present work lies in a joint project with J. Nicaise [12], where we

prove some cases of a conjecture of Chai on the additivity of his base change conductor for semi-

abelian varieties [2] and [3] by using Fubini’s theorem for Motivic Integration from this paper for

the mixed and from [9] for the equal characteristic zero case.

One of the achievements of motivic integration is the definition of measure and integrals on

more general Henselian valued fields than just locally compact ones, for example on Laurent series

fields over a characteristic zero field [17], [14], on complete discrete valuation rings with perfect

residue field [19], [24], [21], and on algebraically closed valued fields [18]. A second achievement,

since [16], and continued in [5] [9] [10], is that motivic integration can be used to interpolate p-adic

integrals for all finite field extension of Qp and integrals over Fq((t)), uniformly in big primes p

and its powers q. A third main achievement which goes together with the introduction of motivic

additive characters and their motivic integrals, is the Transfer Principle of [10] which allows one to

transfer equalities between integrals defined over Qp to equalities of integrals defined over Fp((t))
and vice versa. This is useful to change the characteristic in statements like the Fundamental

Lemma in the Langlands program as is done in [4] [25]. In this paper we will focus on the first

two mentioned achievements of motivic integration, in a mixed characteristic context. Firstly, for

fixed prime p and integer e > 0, we will define the motivic measure and integrals on all Henselian

discretely valued fields of mixed characteristic (0, p) and ramification degree e, which will coincide

with the standard measure in the case of p-adic fields. Secondly, our approach will be uniform in all

unramified, Henselian field extensions, and hence, it will give an interpolation of p-adic integrals

for all p-adic fields with ramification degree e.

Let us explain why the third mentioned achievement of motivic integration is not implemented.
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Of course it would be possible to implement a motivic additive character and motivic ‘oscillating’

integrals involving the character in our context, but this is left out since it is natural to do this as

a next step. However, a Transfer Principle would not make sense in the present context. We will

explain this in the most basic instance of the Transfer Principle, namely in a concrete setting falling

under the Ax-Kochen Ershov principle. Suppose that one has a definable subassignment ϕ as in [9],

namely, a definable subset in the equicharacteristic zero valued field context. Then it is explained

in [10] that, for p big enough, ϕ gives a subset of some Cartesian power of Qp, and similarly of

some Cartesian power of Fp((t)), which is independent of the choice of the formulas which give ϕ.

This independence can be easily obtained from Gödel’s Completeness Theorem (together with the

knowledge of the appropriate theory of Henselian valued fields as used in loc. cit.). Indeed, the fact

that two formulas ψ1 and ψ2 both give the same definable subassignment ϕ is a first order sentence,

and hence, by Gödel’s result, can be deduced from finitely many axioms from the theory. A finite

collection of axioms can at most specify that the residue field characteristic is different from some

concrete primes, but it can never specify that the characteristic is zero. Hence, the fields Qp for p

big enough are also models of this finite collection of axioms and hence ψ1 and ψ2 both give the

same definable set over Qp (and similarly over Fp((t))) for big p. Note that this is a basic instance

of having some result in equicharacteristic 0, and deriving the analogous result in big enough

residue field characteristic. More generally the Transfer Principle transfers results about integrals

from a Qp context to an Fp((t)) context and vice versa, even when the results not necessarily hold

motivically in equicharacteristic zero. It is clear that such techniques are not applicable to our

context since the fact that a valued field has mixed characteristic (0, p) and ramification degree e

is completely expressible by a finite set of axioms. Hence, we cannot change the characteristic for

any of the properties obtained for integrals on the mixed characteristic valued fields. On the other

hand, what we gain (as opposed to the equicharacteristic zero context of [9] and [10]), is that any

motivic relation, calculation, equality, and so on, will hold for all the p-adic fields of the correct

ramification degree and correct residue characteristic (as opposed to for p big enough as in [9] and

[10]).

A basic tool in our approach is to use higher order angular components maps acn for integers

n ≥ 1, already used by Pas in [22], where acn is a certain multiplicative map from the valued

field K to the residue ring OK/Mn
K with MK the maximal ideal of the valuation ring OK . We

use several structure results about definable sets and definable functions in first order languages

involving the acn, one of which is called cell decomposition and goes back to [22] and [5]. Note

that the approach of this paper with the acn would also work in equicharacteristic zero discretely

valued Henselian fields, and it has the advantage of providing much more definable sets than with

ac = ac1 only, for instance all cylinders over definable sets are definable with the acn, which is

not the case if one uses only the usual angular component ac. In mixed characteristic there is a

basic interplay between the residue characteristic p, the ramification degree e, and the angular

component maps acn. Indeed, suppose for example that p = 2, and that we want to lift a root x0

of a polynomial f by Hensel’s Lemma. If it happens that f ′(x0) = 2 for some x0, then we typically

have to know that f(x0) is zero modulo 22 in order to uniquely lift x0 to a zero of f . Hence, one

should be able to speak about approximate roots moduloMn
K with n = 2e. Such basic phenomena

indicate the need of considering higher order residue rings in the setup, instead of only considering

the residue field as in [9] [10].

Similarly as in [9] we consequently study families of motivic integrals, and we obtain many

similar results as in [9]. However, we give a more direct approach to definitions and properties

of the motivic measure and functions than in [9]: instead of the existence-uniqueness theorem of

section 10 of [9], we explicitly define the motivic integrals and the integrability conditions and we
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do this step by step, as an iteration of more simple integrals. These explicit definitions give the

same motivic measure and integrals as the ones that come from a direct image framework. Of

course one has to be careful when translating conditions about integrability of an integral over a

product space to conditions on the iterated integral. Since the value group is the group of integers,

the origin of all integrability issues in our approach is summation on the integers, where one has

the following Tonelli variant of Fubini’s Theorem:

Suppose that f : Zk+` → R is a function taking non-negative values in R. Then one has in

R ∪ {+∞} that (without any convergence conditions)∑
(x,y)∈Zk+`

f(x, y) =
∑
x∈Zk

g(x)

with g : Zk → R ∪ {+∞} : x 7→
∑
y∈Z` f(x, y). Hence, f is summable over Zk+` if and only if g

is real valued and summable over Zk.

Hence, the Tonelli variant of Fubini’s Theorem for non-negatively valued functions translates inte-

grability issues to iterated, more simple integrals. The notion of non-negativity for motivic functions

is defined as in [9], namely, by using semi-rings as value rings of the motivic functions (as opposed

to rings). Note that in a semi-ring, every element is considered as nonnegative, like one does in the

semi-ring N.

One new feature that does not appear in [9], and which provides more flexibility in view of

future applications, is the usage of the abstract notion of T -fields, where T stands for a first order

theory. The reader has the choice to work with some of the listed more concrete examples of T -

fields (which are close to the concrete semi-algebraic setup of [9] or the subanalytic setup of [5]) or

with axiomatic, abstract T -fields. Thus, T -fields allow one to work with more general theories T
than the theories in the original work by Pas. Note that also this feature of integration on T -fields

would work similarly in the equicharacteristic zero context, as a generalization of [9].

Some of the highlights of our formalism coincide with the highlights of [9], consisting of a general

change of variables formula, a general Fubini Theorem, the ability to specialize to previously known

theories of motivic integration (e.g. as in [19]), the ability to interpolate many p-adic integrals,

avoidance of any completion process on the Grothendieck ring level, and, very importantly, the

ability to work in parameter set-ups where the parameters can come from the valued field, the

residue field, and the value group (this last property has been very useful in [4] and [25]).

To make our work more directly comparable and linked with [9], we write down in Section

11 how our more direct definitions of integrable constructible motivic functions lead naturally

to a direct image formalism, analogous to the one in [9]. Let us indicate how [9] and this paper

complement each other, by an example. Having an equality between two motivic integrals as in

[9] implies that the analogous equality will hold over all p-adic fields for p big enough and all

fields Fq((t)) of big enough characteristic (the lower bound can be computed but is usually very

bad). This leaves one with finitely ‘small’ primes p, say, primes which are less than N . For the

fields Fq((t)) of small characteristic, very little is known in general and one must embark on a case

by case study. On the other hand, in mixed characteristic, one could use the framework of this

paper finitely many times to obtain the equality for all p-adic fields with residue characteristic less

than N and bounded ramification degree. Note that knowing an equality for a small prime p and

all possible ramification degrees is more or less equivalent to knowing it in Fp((t)), which as we

mentioned can be very hard.

We end Section 11 with a comparison with work by J. Sebag and the second author on motivic

integration in a smooth, rigid, mixed characteristic context. This comparison plays a role in [12].
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This is a summary and contains almost no proofs. We refer to our paper in preparation [11]

for complete proofs. Also in [11], we will implement both the mixed characteristic approach of this

paper and the equicharacteristic zero approach, generalizing and complementing [9].

1.2 A concrete setting

1.2.1

A discretely valued field L is a field with a surjective group homomorphism ord : L× → Z, satisfying

the usual axioms of a non-archimedean valuation. A ball in L is by definition a set of the form

{x ∈ L | γ ≤ ord(x− a)}, where a ∈ L and γ ∈ Z. The collection of balls in L forms a base for the

so-called valuation topology on L. The valued field L is called Henselian if its valuation ring OL is

a Henselian ring. Write ML for the maximal ideal of OL.

In the whole paper we will work with the notion of T -fields, which is more specific than the

notion of discretely valued field, but which can come with additional structure if one wants. The

reader who wants to avoid the formalism of T -fields may skip Section 1.3 and directly go to Section

1.4 and use the following concrete notion of (0, p, e)-fields instead of T -fields.

1.2.2 Definition Fix an integer e > 0 and a prime number p. A (0, p, e)-field is a Henselian,

discretely valued field K of characteristic 0, residue field characteristic p, and ramification degree

e, together with a chosen uniformizer πK of the valuation ring OK of K. That the ramification

degree of K is e means that ordπeK = ordp = e.

Note that Qp together with, for example, p as a uniformizer is a (0, p, 1)-field, as well as the

algebraic closure of Q inside Qp, or any unramified, Henselian field extension of Qp. A (0, p, e)-field

K comes with natural so-called higher order angular component maps for n ≥ 1,

acn : K× → (OK modMn
K) : x 7→ π−ordx

K x modMn
K

extended by acn(0) = 0. Sometimes one writes ac for ac1. Each map acn is multiplicative on K

and coincides on O×K with the natural projection OK → OK/Mn
K .

1.2.3

To describe sets in a field independent way, we will use first order languages, where the following

algebraic one is inspired by languages of Denef and Pas. Its name comes from the usage of higher

order angular component maps, namely modulo positive powers of the maximal ideal. Consider the

following basic language Lhigh which has a sort for the valued field, a sort for the value group, and

a sort for each residue ring of the valuation ring modulo πn for integers n > 0. On the collection

of these sorts, Lhigh consists of the language of rings for the valued field together with a symbol

π for the uniformizer, the language of rings for each of the residue rings, the Presburger language

(+,−, 0, 1,≤, {· ≡ · mod n}n>1) for the value group, a symbol ord for the valuation map, symbols

acn for integers n > 0 for the angular component maps modulo the n-th power of the maximal

ideal, and projection maps pn,m between the residue rings for n ≥ m. On each (0, p, e)-field K, the

language Lhigh has its natural meaning, where π stands for πK , ord for the valuation K× → Z,

acn for the angular component map K → OK/Mn
K , and pn,m for the natural projection map from

OK/Mn
K to OK/Mm

K .

Let T(0,p,e) be the theory in the language Lhigh of sentences that are true in all (0, p, e)-fields.

Thus, in particular, each (0, p, e)-field is a model of T(0,p,e). In this concrete setting, we let T be
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T(0,p,e) in the language Lhigh, and T -field means (0, p, e)-field. One can give a concrete list of axioms

that imply the whole theory T(0,p,e) (see [22]), but this is not relevant to this paper.

1.3 Theories on (0, p, e)-fields

In total we give three approaches to T -fields in this paper, so that the reader can choose which

one fits him best. The first one is the concrete setting of Section 1.2; the second one consists of

a list of more general and more adaptable settings in Section 1.3.1, and the third approach is the

axiomatic approach for theories and languages on (0, p, e)-fields in Section 1.3.2. Recall that for the

first approach one takes T = T(0,p,e) in the language Lhigh, and T -field just means (0, p, e)-field.

1.3.1 A list of theories

In our second approach, we give a list of theories and corresponding languages which can be used

throughout the whole paper.

1. Most closely related to the notion of (0, p, e)-fields is that of (0, p, e)-fields over a given ring

R0, for example a ring of integers, using the language Lhigh(R0). Namely, for R0 a subring of

a (0, p, e)-field, let Lhigh(R0) be the language Lhigh with coefficients (also called parameters)

from R0, and let T(0,p,e)(R0) be the theory of (0, p, e)-fields over R0 in the language Lhigh(R0).

In this case one takes T = T(0,p,e)(R0) with language Lhigh(R0). By a (0, p, e)-field K over R0

we mean in particular that the order and angular component maps on K extend the order and

angular component maps on R0.

2. In order to include analytic functions, let K be a (0, p, e)-field, and for each integer n ≥ 1 let

K{x1, . . . , xn} be the ring of those formal power series
∑
i∈Nn aix

i over K such that ord(ai) goes

to +∞ whenever i1 + . . .+ in goes to +∞. Let LK be the language Lhigh together with function

symbols for all the elements of the rings K{x1, . . . , xn}, for all n > 0. Each complete (0, p, e)-

field L over K allows a natural interpretation of the language LK , where f in K{x1, . . . , xn} is

interpreted naturally as a function from OnL to L. Let TK be the theory in the language LK of

the collection of complete (0, p, e)-fields L over K. In this case one takes T = TK with language

LK . For an explicit list of axioms that implies TK , see [5].

3. More generally than in the previous example, any of the analytic structures of [7] can be used

for the language with corresponding theory T , provided that T has at least one (0, p, e)-field as

model.

4. For T0 and L0 as in any of the previous three items let T and L be any expansion of T0 and

L0, which enriches T0 and L0 exclusively on the residue rings sorts. Suppose that T has at least

one model which is a (0, p, e)-field.

For any of the listed theories in the corresponding languages, a T -field is by definition a (0, p, e)-

field that is a model for T .

1.3.2 The axiomatic set-up

Our third approach to T -fields consists of a list of axioms which should be fulfilled by an otherwise

unspecified theory T in some language L. The pairs of theories and languages for (0, p, e)-fields

in the prior two approaches are examples of this axiomatic set-up by Proposition 1.3.10 (see

Proposition 1.3.11 for more examples).
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In our third approach, we start with a language L which contains Lhigh and has the same sorts

as Lhigh, and a theory T which contains T(0,p,e) and which is formulated in the language L. The

sort for the valued field is called the main sort, and each of the other sorts (namely the residue

ring sorts and the value group sort) are called auxiliary. It is important that no extra sorts are

created along the way.

The list of axioms will be about all models of T , and not only about (0, p, e)-fields. Note that

any model K of the theory T(0,p,e) with valued field K carries an interpretation of all the symbols

of Lhigh with the usual first order properties, even when K is not a (0, p, e)-field1. We will use

the notation πK , acn and so on for the meaning of the symbols π and acn of Lhigh, as well as the

notion of balls, and so on, for all models of T(0,p,e). The axioms below will involve parameters, which

together with typical model theoretic compactness arguments will yield all the family-versions of

the results we will need for motivic integration. To see in detail how such axioms are exploited,

we refer to [8]. By definable, resp. A-definable, we will mean L-definable without parameters,

resp. L-definable allowing parameters from A, unless otherwise stated.

The following two Jacobian properties treat close-to-linear (local) behavior of definable functions

in one variable.

1.3.3 Definition (Jacobian property for a function) Let K be the valued field of a model of

T(0,p,e). Let F : B → B′ be a function with B,B′ ⊂ K. We say that F has the Jacobian property

if the following conditions hold all together:

(i) F is a bijection and B,B′ are balls in K,

(ii) F is C1 on B,

(iii)

∂F

∂x
is nonvanishing and ord

(∂F
∂x

)
is constant on B,

(iv) for all x, y ∈ B with x 6= y, one has

ord
(∂F
∂x

)
+ ord(x− y) = ord(F (x)− F (y)).

If moreover n > 0 is an integer, we say that F has the n-Jacobian property if also the following

hold

(v) acn
(
∂F
∂x

)
is constant on B,

(vi) for all x, y ∈ B one has

acn
(∂F
∂x

)
· acn(x− y) = acn(F (x)− F (y)).

Very often, the Jacobian property is used in families (with a model theoretic compactness

argument), which explains our choice for the partial derivative notation in the above definition.

1.3.4 Definition (Jacobian property for T ) Say that the Jacobian property holds for the L-

theory T if for any model K with Henselian valued field K the following holds.

For any finite set A in K (serving as parameters in whichever sorts), any integer n > 0, and

any A-definable function F : K → K there exists an A-definable function

f : K → S

with S a Cartesian product of (the K-universes of) sorts not involving K (these are also called

1 This can happen, for example, when K is not discretely valued.
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auxiliary sorts), such that each infinite fiber f−1(s) is a ball on which F is either constant or has

the n-Jacobian property (as in Definition 1.3.3).

The following notion of T being split is related to the model-theoretic notions of orthogonality

and stable embeddedness.

1.3.5 Definition (Split) Call T split if the following conditions hold for any model K with

Henselian valued field K, value group Γ and residue rings OK/Mn
K

(i). Any K-definable subset of Γr is Γ-definable in the language (+,−, 0, <).

(ii). For any finite set A in K, any A-definable subset X ⊂ (
∏s
i=1OK/M

mi

K )×Γr is equal to a finite

disjoint union of Yi × Zi where the Yi are A-definable subsets of
∏s
i=1OK/M

mi

K , and the Zi
are A-definable subsets of Γr.

The general notion of b-minimality is introduced in [8]. Here we work with a version which is

more concretely adapted to the valued field setting.

1.3.6 Definition (Finite b-minimality) Call T finitely b-minimal if the following hold for any

model K with Henselian valued field K. Each locally constant K-definable function g : K× → K

has finite image, and, for any finite set A in K (serving as parameters in whichever sorts) and any

A-definable set X ⊂ K, there exist an integer n, an A-definable function

f : X → S

with S a Cartesian product of (the K-universes of) sorts not involving K (also called auxiliary

sorts), and an A-definable function

c : S → K

such that each nonempty fiber f−1(s) for s ∈ S is either

1. equal to the singleton {c(s)}, or,

2. equal to the ball {x ∈ K | acn(x− c(s)) = ξ(s), ord(x− c(s)) = z(s)} for some ξ(s) in OK/Mn
K

and some z(s) ∈ Γ.

Note that in the above definition, the values z(s) and ξ(s) depend uniquely on s in the case

that f−1(s) is a ball and can trivially be extended when f−1(s) is not a ball so that s 7→ z(s) and

s 7→ ξ(s) can both be seen as A-definable functions on S.

1.3.7 Lemma For any model K with valued field K of a finitely b-minimal theory, any definable

function from a Cartesian product of (the K-universes of) auxiliary sorts to K has finite image,

and so does any definable, locally constant function from any definable set X ⊂ Kn to K.

1.3.8 Corollary A finitely b-minimal theory is in particular b-minimal (as defined in [8]).

Finally we come to the most general notion of T -fields, namely the axiomatic one of our third

approach.

1.3.9 Definition Let T be a theory containing T(0,p,e) in a language L with the same sorts as

Lhigh, which is split, finitely b-minimal, has the Jacobian property, and has at least one (0, p, e)-field

as model. Then by a T -field we mean a (0, p, e)-field which is a model of T .

We have the following variant of the cell decomposition statement and related structure results

on definable sets and functions of [7] for our more concrete theories.
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1.3.10 Theorem ([7]) The theory T(0,p,e) as well as the listed theories in 1.3.1 satisfy the con-

ditions of Definition 1.3.9.

Finally we indicate how one can create new theories with properties as in Definition 1.3.9.

1.3.11 Proposition Let T be a theory that satisfies the conditions of Definition 1.3.9. Then so

does the theory T (R) in the language L(R) for any ring R which is a subring of a T -field, where

T (R) is the theory of all T -fields which are algebras over R (and which extend ord and the acn on

R).

From now on we fix one of the notions of T , L, and T -fields as in Definition 1.3.9 for the rest

of the paper, which includes the possibility of T and L being as in Sections 1.2, 1.3.1, or as in

Proposition 1.3.11. We will often write K for a T -field instead of writing the pair K,πK where πK
is a uniformizer of OK .

1.4 Definable subassignments and definable morphisms

1.4.1

We recall that definable means L-definable without parameters2. For any integers n, r, s ≥ 0 and

for any tuple m = (m1, . . . ,ms) of nonnegative integers, denote by h[n,m, r] the functor sending

a T -field K to

h[n,m, r](K) := Kn × (OK/Mm1

K )× · · · × (OK/Mms

K )× Zr.

The data of a subset XK of h[n,m, r](K) for each T -field K is called a definable subasssignment

(in model theory sometimes loosely called a definable set), if there exists an L-formula ϕ in tuples

of free variables of the corresponding lengths and in the corresponding sorts such that XK equals

ϕ(K), the set of the points in h[n,m, r](K) satisfying ϕ.

An example of a definable subassignment of h[1, 0, 0] is the data of the subset P2(K) ⊂ K

consisting of the nonzero squares in K for each T -field K, which can be described by the formula

∃y(y2 = x∧x 6= 0) in one free variable x and one bounded variable y, both running over the valued

field3.

A definable morphism f : X → Y between definable subassignments X and Y is given by

a definable subassignment G such that G(K) is the graph of a function X(K) → Y (K) for any

T -field K. We usually write f for the definable morphism, Graph(f) for G, and fK for the function

X(K)→ Y (K) with graph G(K). A definable isomorphism is by definition a definable morphism

which has an inverse.

Denote by Def (or Def(T ) in full) the category of definable subassignments with the definable

morphisms as morphisms. More generally, for Z a definable subassignment, denote by DefZ the

category of definable subassignments X with a specified definable morphism X → Z to Z, with as

morphisms between X and Y the definable morphisms which make commutative diagrams with

the specified X → Z and Y → Z. We will often use the notation X/Z for X in DefZ . In the prior

publications [9] and [10], we consequently used the notation X → Z instead of the shorter X/Z .

For every morphism f : Z → Z ′ in Def, composition with f defines a functor f! : DefZ → DefZ′ ,

sending X/Z to X/Z′ . Also, fiber product defines a functor f∗ : DefZ′ → DefZ , namely, by sending

2 Note that parameters from, for example, a base ring can be used, see Section 1.3.1 and Proposition 1.3.11.
3 Note that, as is standard, to determine ϕ(K), each variable occurring in ϕ (thus also the variables which are

bound by a quantifier and hence not free), runs over exactly one set out of K, Z, or a residue ring OK/M`
K .
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Y/Z′ to (Y ⊗Z′ Z)/Z , where for each T -field K the set (Y ⊗Z′ Z)(K) is the set-theoretical fiber

product of Y (K) with Z(K) over Z ′(K) with the projection as specified function to Z(K).

Let Y and Y ′ be in Def. We write Y ×Y ′ for the subassignment corresponding to the Cartesian

product and we write Y [n,m, r] for Y ×h[n,m, r]. (We fix in the whole paper h to be the definable

subassignment of the singleton {0}, that is, h(K) = {0} = K0 for all K, so that h[n,m, r], as

previously defined, is compatible with the notation of Y [n,m, r] for general Y .)

By a point on a definable subassignment X we mean a tuple x = (x0,K) where K is a T -field

and x0 lies in X(K). We denote |X| for the collection of all points that lie on X.

1.4.2 Dimension

Since T is in particular b-minimal in the sense of [8] by Corollary 1.3.8, for each T -field K and

each definable subassignment ϕ we can take the dimension of ϕ(K) to be as defined in [8], and use

the dimension theory from [8]. In the context of finite b-minimality, for nonempty and definable

X ⊂ h[n,m, r](K), this dimension is defined by induction on n, where for n = 0 the dimension

of X is defined to be zero, and, for n = 1, dimX = 1 if and only if p(X) contains a ball where

p : h[1,m, r](K)→ K is the coordinate projection, and one has dimX = 0 otherwise. For general

n ≥ 1, the dimension of such X is the maximal number r > 0 such that for some coordinate

projection p : h[n,m, r](K) → Kr, p(X) contains a Cartesian product of r balls if such r exists

and the dimension is 0 otherwise. Note that a nonempty definable X ⊂ h[n,m, r](K) has dimension

zero if and only if it is a finite set.

The dimension of a definable subassignment ϕ itself is defined as the maximum of all ϕ(K)

when K runs over all T -fields.

For f : X → Y a definable morphism and K a T -field, the relative dimension of the set X(K)

over Y (K) (of course along fK) is the maximum of the dimensions of the fibers of fK , and the

relative dimension of the definable assignment X over Y (along f) is the maximum of these over

all K.

One has all the properties of [8] for the dimensions of the sets ϕ(K) and the related properties for

the definable subassignments themselves, analogous to the properties of the so-called K-dimension

of [9].

1.5 Summation over the value group

We consider a formal symbol L and the ring

A := Z
[
L,L−1,

( 1

1− L−i
)
i>0

]
,

as subring of the ring of rational functions in L over Q. Furthermore, for each real number q > 1,

we consider the ring morphism

θq : A→ R : r(L) 7→ r(q),

that is, one evaluates the rational function r(L) in L at q.

Recall that h[0, 0, 1] can be identified with Z, since h[0, 0, 1](K) = Z for all T -fields K. Let S be

in Def, that is, let S be a definable subassignment. A definable morphism α : S → h[0, 0, 1] gives

rise to a function (also denoted by α) from |S| to Z which sends a point (s,K) on S to αK(s).

Likewise, such α gives rise to the function Lα from |S| to A which sends a point (s,K) on S to

LαK(s).
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We define the ring P(S) of constructible Presburger functions on S as the subring of the ring

of functions |S| → A generated by

1. all constant functions into A,

2. all functions α : |S| → Z with α : S → h[0, 0, 1] a definable morphism,

3. all functions of the form Lβ with β : S → h[0, 0, 1] a definable morphism.

Note that a general element of P(S) is thus a finite sum of terms of the form aLβ
∏`
i=1 αi with

a ∈ A, and the β and αi definable morphisms from S to h[0, 0, 1] = Z.

For any T -field K, any q > 1 in R, and f in P(S) we write θq,K(f) : S(K)→ R for the function

sending s ∈ S(K) to θq(f(s,K)).

Define a partial ordering on P(S) by setting f ≥ 0 if for every q > 1 in R and every s in |S|,
θq(f(s)) ≥ 0. We denote by P(S)+ the set {f ∈ P(S) | f ≥ 0}. Write f ≥ g if f − g is in P+(S).

Similarly, write A+ for the sub-semi-ring of A consisting of the non-negative elements of A, namely

those elements a with θq(a) ≥ 0 for all real q > 1.

Recall the notion of summable families in R or C, cf. [1] VII.16. In particular, a family (zi)i∈I
of complex numbers is summable if and only if the family (|zi|)i∈I is summable in R.

We shall say a function ϕ in P(h[0, 0, r]) is integrable if for each T -field K and for each real

q > 1, the family (θq,K(ϕ)(i))i∈Zr is summable.

More generally we shall say a function ϕ in P(S[0, 0, r]) is S-integrable if for each T -field K,

for each real q > 1, and for each s ∈ S(K), the family (θq,K(ϕ)(s, i))i∈Zr is summable. The latter

notion of S-integrability is key to all integrability notions in this paper.

We denote by ISP(S[0, 0, r]) the collection of S-integrable functions in P(S[0, 0, r]). Likewise,

we denote by ISP+(S[0, 0, r]) the collection of S-integrable functions in P+(S[0, 0, r]). Note that

ISP(S[0, 0, r]), resp. ISP+(S[0, 0, r]), is a P(S)-module, resp. a P+(S)-semi-module.

The following is inspired by results in [13] and appears in this form in [9].

1.5.1 Theorem-Definition For each ϕ in ISP(S[0, 0, r]) there exists a unique function ψ =

µ/S(ϕ) in P(S) such that for all q > 1, all T -fields K, and all s in S(K)

θq,K(ψ)(s) =
∑
i∈Zr

θq,K(ϕ)(s, i). (1.1)

Moreover, the mapping ϕ 7→ µ/S(ϕ) yields a morphism of P(S)-modules

µ/S : ISP(S × Zr) −→ P(S).

The proof of 1.5.1 is based on finite b-minimality, the fact that T is split, and explicit cal-

culations, mainly of geometric series and their derivatives. Clearly, the above map µ/S sends

ISP+(S × Zr) to P+(S). For Y a definable subassignment of S, we denote by 1Y the function

in P(S) with value 1 on Y and zero on S \ Y . We shall denote by P0(S) (resp. P0
+(S)) the sub-

ring (resp. sub-semi-ring) of P(S) (resp. P+(S)) generated by the functions 1Y for all definable

subassignments Y of S and by the constant function L− 1.

If f : Z → Y is a morphism in Def, composition with f yields natural pullback morphisms

f∗ : P(Y )→ P(Z) and f∗ : P+(Y )→ P+(Z). These pullback morphisms and the subrings P0(S)

will play a role for the richer class of motivic constructible functions. First we turn our attention to

another ingredient for motivic constructible functions, coming from the residue rings. Afterwards

we will glue these two ingredients along the common subrings P0
+(S) to define motivic constructible

functions.
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1.6 Integration over the residue rings

On the integers side we have defined rings of (nonnegative) constructible Presburger functions

P+(·) and a summation procedure over subsets of Zr. On the residue rings side we will proceed

differently.

Let Z be a definable subassignment in Def. Define the semi-group Q+(Z) as the quotient of

the free abelian semi-group over symbols [Y ] with Y/Z a subassignment of Z[0,m, 0] for some

m = (m1, . . . ,ms) with mi ≥ 0 and s ≥ 0, with as distinguished map from Y to Z the natural

projection, by the following relations.

[∅] = 0, where ∅ is the empty subassignment. (1.2)

[Y ] = [Y ′] (1.3)

if there exists a definable isomorphism Y → Y ′ which commutes with the projections Y → Z

and Y ′ → Z.

[Y1 ∪ Y2] + [Y1 ∩ Y2] = [Y1] + [Y2] (1.4)

for Y1 and Y2 definable subassignments of a common Z[0,m, 0] for some m.

[Y [0,m′, 0]] = [Y ′] (1.5)

if for the projection p : Z[0,m + m′, 0] → Z[0,m, 0] one has Y ′ = p−1(Y ) for some definable

Y ⊂ Z[0,m, 0] and some mi,m
′
i ≥ 0.

We will still write [Y ] for the class of [Y ] in Q+(Z) for Y ⊂ Z[0,m, 0]. In [9], the longer notation

SK0(RDefZ) is used instead of Q+(Z). Note that in [9] relation (1.5) is left out since it is redundant

if one only uses ac1 instead of all the acn. The semi-group Q+(Z) carries a semi-ring structure

with multiplication for Y ⊂ Z[0,m, 0] and Y ′ ⊂ Z[0,m′, 0] given by

[Y ] · [Y ′] := [Y ⊗Z Y ′],

where the fibre product is taken along the coordinate projections to Z. Similarly, for f : Z1 → Z2

any morphism in Def, there is a natural pullback homomorphism of semi-rings f∗ : Q+(Z2) →
Q+(Z1) which sends [Y ] for some Y ⊂ Z2[0,m, 0] to [Y ⊗Z2

Z1]. Write L for the class of Z[0, 1, 0]

in Q+(Z). Then, by relation (1.5), one has that the class of Z[0,m, 0] in Q+(Z) equals L|m|
with m = (mi)i and |m| =

∑
imi. Clearly, for each a ∈ Q+(Z), there exists a tuple m and a

Y ⊂ Z[0,m, 0] such that a = [Y ].

To preserve a maximum of information at the level of the residue rings, we will integrate

functions in Q+(·) over residue ring variables in a formal way. Suppose that Z = X[0, k, 0] for

some tuple k, let a be in Q+(Z) and write a as [Y ] for some Y ⊂ Z[0, n, 0]. We write µ/X for the

corresponding formal integral in the fibers of the coordinate projection Z → X

µ/X : Q+(Z)→ Q+(X) : [Y ]→ [Y ],

where the class of Y is first taken in Q+(Z) and then in Q+(X). Note that this allows one to

integrate functions from Q+ over residue ring variables, but of course not over valued field neither

over value group variables. To integrate over any kind of variables, we will need to combine the

value group part P+ and the residue rings part Q+.
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1.7 Putting P+ and Q+ together to form C+

Many interesting functions on Henselian valued fields have a component that comes essentially from

the value group and one that comes from residue rings. For Z in Def, we will glue the pieces P+(Z)

and Q+(Z) together by means of the common sub-semi-ring P0
+(Z). Recall that P0

+(Z) is the sub-

semi-ring of P+(Z) generated by the characteristic functions 1Y for all definable subassignments

Y ⊂ Z and by the constant function L− 1.

Using the canonical semi-ring morphism P0
+(Z) → Q+(Z), sending 1Y to [Y ] and L − 1 to

L− 1, we define the semi-ring C+(Z) as

P+(Z)⊗P0
+(Z) Q+(Z).

We call elements of C+(Z) (nonnegative) constructible motivic functions on Z.

If f : Z → Y is a morphism in Def, we find natural pullback morphisms f∗ : C+(Y )→ C+(Z),

by the tensor product definition of C+(·). Namely, f∗ maps
∑r
i=1 ai ⊗ bi to

∑
i f
∗(ai) ⊗ f∗(bi),

where ai ∈ P+(Y ) and bi ∈ Q+(Y ).

1.7.1 Interpretation in non-archimedean local fields.

An important feature of our setting (as well as in the settings of [9] and [16]) is that the motivic

constructible functions and their integrals interpolate actual functions and their integrals on non-

archimedean local fields, and even more generally on T -fields with finite residue field.

Let X ⊂ h[n,m, r] be in Def, let ϕ be in C+(X), and let K be a T -field with finite residue

field. In this case ϕ gives rise to an actual set-theoretic function ϕK from X(K) to Q≥0, defined

as follows:

For a in P+(X), one gets aK : X(K)→ Q≥0 by replacing L by qK , the number of elements in

the residue field of K.

For b = [Y ] with Y a subassignment of X[0,m, 0] in Q+(X), if one writes p : Y (K) → X(K)

for the projection, one defines bK : X(K)→ Q≥0 by sending x ∈ X(K) to #(p−1(x)), that is, the

number of points in Y (K) that lie above x ∈ X(K).

For our general ϕ in C+(X), write ϕ as a finite sum
∑
i ai⊗bi with ai ∈ P+(X) and bi ∈ Q+(X).

Our general definitions are such that the function

ϕK : X(K)→ Q≥0 : x 7→
∑
i

aiK(x) · biK(x)

does not depend on the choices made for ai and bi.

1.7.2 Integration over residue rings and value group

We have the following form of independence (or orthogonality) between the integer part and the

residue rings part of C+(·).

1.7.3 Proposition Let S be in Def. The canonical morphism

P+(S[0, 0, r])⊗P0
+(S) Q+(S[0,m, 0]) −→ C+(S[0,m, r])

is an isomorphism of semi-rings, where the homomorphisms p∗ : P0
+(S) → P+(S[0, 0, r]) and

q∗ : P0
+(S) → Q+(S[0,m, 0]) are induced by the pullback homomorphisms of the projections p :

S[0, 0, r]→ S and q : S[0,m, 0]→ S.
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The mentioned canonical morphism of Proposition 1.7.3 sends a ⊗ b to p∗1(a) ⊗ p∗2(b), where

p1 : S[0,m, r] → S[0, 0, r] and p1 : S[0,m, r] → S[0,m, 0] are the projections. Of course the proof

of Proposition 1.7.3 uses that T is split. Recall that for a in Q+(X), one can write a = [Y ] for

some Y in DefX , say, with specified morphism f : Y → X. We shall write 1a := 1f(Y ) for the

characteristic function of f(Y ), the “support” of a.

1.7.4 Lemma-Definition Let ϕ be in C+(Z) and suppose that Z = X[0,m, r] for some X in

Def. Say that ϕ is X-integrable if one can write ϕ =
∑`
i=1 ai ⊗ bi with ai ∈ P+(X[0, 0, r]) and

bi ∈ Q+(X[0,m, 0]) as in Proposition 1.7.3 such that moreover the ai lie in IXP+(X[0, 0, r]) in the

sense of Section 1.5. If this is the case, then

µ/X(ϕ) :=
∑
i

µ/X(ai)⊗ µ/X(bi) ∈ C+(X)

does not depend on the choice of the ai and bi and is called the integral of ϕ in the fibers of the

coordinate projection Z → X.

The following lemma is a basic form of a projection formula which concerns pulling a factor out

of the integral if the factor depends on other variables than the ones that one integrates over.

1.7.5 Lemma Let ϕ be in C+(Z) such that ϕ is X-integrable, where Z = X[0,m, r] for some X

in Def. Let ψ be in C+(X) and let p : Z → X be the projection. Then p∗(ψ)ϕ is X-integrable and

µ/X(p∗(ψ)ϕ) = ψµ/X(ϕ)

holds in C+(X).

Note that Lemma 1.7.5 is immediate when m = 0. Using the natural morphisms P+(Z) →
C+(Z) which sends ψ to ψ⊗ [Z], and Q+(Z)→ C+(Z) which sends ν to 1Z ⊗ ν, we can formulate

the following. (Note that P+(Z) → C+(Z) : b 7→ 1Z ⊗ b is not necessarily injective neither

necessarily surjective.)

1.7.6 Lemma For any ϕ ∈ C+(Z) there exist ψ in P+(Z[0,m, 0]) and ν in Q+(Z[0, 0, r]) for

some m and r such that ν is Z-integrable and ϕ = µ/Z(ψ) = µ/Z(ν).

Here is a first instance of the feature that relates integration of motivic functions with actual

integration (or summation) on T -fields with finite residue field.

1.7.7 Lemma Let ϕ be in C+(Z) and suppose that Z = X[0,m, r] for some X in Def. Let K be

a T -field with finite residue field and consider ϕK as in Section 1.7.1. If ϕ is X-integrable then,

for each x ∈ X(K), ϕK(x, ·) : y 7→ ϕK(x, y) is integrable against the counting measure, and if one

writes ψ for µ/X(ϕ), then

ψK(x) =
∑
y

ϕK(x, y)

where the summation is over those y such that (x, y) ∈ Z(K).

1.8 Integration over one valued field variable

For the moment let K be any discretely valued field. For a ball B ⊂ K and for any real number

q > 1, define θq(B) as the real number q−ordb, where b ∈ K× is such that B = a+ bOK for some

a ∈ K. We call θq(B) the q-volume of B.
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Next we will define a naive and simple notion of step-function. Finite b-minimality will allow

us to reduce part of the integration procedure to step-functions. A finite or countable collection of

balls in K, each with different q-volume, is called a step-domain. We will identify a step-domain

S with the union of the balls in S. This is harmless since one can recover the individual balls

from their union since they all have different q-volume. Call a nonnegative real valued function

ϕ : K → R≥0 a step-function if there exists a unique step-domain S such that ϕ is constant and

nonzero on each ball of S and zero outside S ∪ {a} for some a ∈ K. Note that uniqueness of the

step-domain S for ϕ is automatic, except possibly when the residue field has two elements.

Let q > 1 be a real number. Say that a step-function ϕ : K → R≥0 with step-domain S is

q-integrable over K if and only if ∑
B∈S

θq(B) · ϕ(B) <∞, (1.1)

where one sums over the balls B in S, and then the expression (1.1) is called the q-integral of ϕ

over K. Using Theorem 1.5.1 one proves the following.

1.8.1 Lemma-Definition Suppose that Z = X[1, 0, 0] for some X in Def. Let ϕ be in P+(Z).

Call ϕ an X-integrable family of step-functions if for each T -field K, for each x ∈ X(K), and for

each q > 1, the function

θq,K(ϕ)(x, ·) : K → R≥0 : t 7→ θq,K(ϕ)(x, t) (1.1)

is a step-function which is q-integrable over K. If ϕ is such a family, then there exists a unique

function ψ in P+(X) such that θq,K(ψ)(x) equals the q-integral over K of (1.1) for each T -field

K, each x ∈ X(K), and each q > 1. We then call ϕ X-integrable, we write

µ/X(ϕ) := ψ

and call µ/X(ϕ) the integral of ϕ in the fibers of Z → X.

Finally we define how to integrate a general motivic constructible function over one valued field

variable, in families.

1.8.2 Lemma-Definition Let ϕ be in C+(Z) and suppose that Z = X[1, 0, 0]. Say that ϕ is

X-integrable if there exists ψ in P+(Z[0,m, 0]) with µ/Z(ψ) = ϕ as in Lemma 1.7.6 such that ψ is

X[0,m, 0]-integrable in the sense of Lemma-Definition 1.8.1 and then

µ/X(ϕ) := µ/X(µ/X[0,m,0](ψ)) ∈ C+(X)

is independent of the choices and is called the integral of ϕ in the fibers of Z → X.

The proof of 1.8.2 is similar to the proofs in section 9 of [9].

1.9 General integration

In this section we define the motivic measure and the motivic integral of motivic constructible

functions in general. For uniformity results and for applications it is important that we do this in

families, namely, in the fibers of projections X[n,m, r]→ X for X in Def. We define the integrals

in the fibers of a general coordinate projection X[n,m, r]→ X by induction on n ≥ 0.
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1.9.1 Lemma-Definition Let ϕ be in C+(Z) and suppose that Z = X[n,m, r] for some X in

Def. Say that ϕ is X-integrable if there exist a definable subassignment Z ′ ⊂ Z whose complement

in Z has relative dimension < n over X, and an ordering of the coordinates on X[n,m, r] such

that ϕ′ := 1Z′ϕ is X[n− 1,m, r]-integrable and µ/X[n−1,m,r](ϕ
′) is X-integrable. If this holds then

µ/X(ϕ) := µ/X(µ/X[n−1,m,r](ϕ
′)) ∈ C+(X)

does not depend on the choices and is called the integral of ϕ in the fibers of Z → X, and is

compatible with the definitions made in 1.8.2.

More generally, let ϕ be in C+(Z) and suppose that Z ⊂ X[n,m, r]. Say that ϕ is X-integrable

if the extension by zero of ϕ to a function ϕ̃ in C+(X[n,m, r]) is X-integrable, and define µ/X(ϕ)

as µ/X(ϕ̃). If X is h[0, 0, 0] (which is a final object in Def), then we write µ instead of µ/X and we

call µ(ϕ) the integral of ϕ over Z.

One can prove 1.9.1 in two ways (both relying on all the properties of T -fields of Definition

1.3.9): using more recent insights from [6] to reverse the order of the coordinates, or, using the

slightly longer approach from [9] with a calculation on bi-cells.

One of the main features is a natural relation between motivic integrability and motivic in-

tegration on the one hand, and classical measure theoretic integrability and integration on local

fields on the other hand:

1.9.2 Proposition Let ϕ be in C+(X[n,m, r]) for some X in Def. If ϕ is X-integrable, then, for

each local field K which is a T -field and for each x ∈ X(K) one has that ϕK(x, ·) is integrable (in

the standard measure-theoretic sense). If one further writes ψ for µ/X(ϕ), then, for each x ∈ X(K),

ψK(x) =

∫
y

ϕK(x, y),

where the integral is against the product measure of the Haar measure on K with the counting

measure on Z and on the residue rings for y running over h[n,m, r](K), and where the Haar

measure gives OK measure one.

1.10 Further properties

As mentioned before, the projection formula allows one to pull a factor out of the integral if that

factor depends on other variables than the ones that one integrates over.

1.10.1 Proposition (Projection formula) Let ϕ be in C+(Z) for some Z ⊂ X[n,m, r] and some

X in Def. Suppose that ϕ is X-integrable, let ψ be in C+(X) and let p : Z → X be the projection.

Then p∗(ψ)ϕ is X-integrable and

µ/X(p∗(ψ)ϕ) = ψµ/X(ϕ)

holds in C+(X).

In other words, if one would write IXC+(Z) for the X-integrable functions in C+(Z), then

µ/X : IXC+(Z)→ C+(Z) : ϕ 7→ µ/X(ϕ)

is a morphism of C+(X)-semi-modules, where the semi-module structure on IXC+(Z) comes from

the homomorphism p∗ : C+(X)→ C+(Z) of semi-rings, with p : Z → X the projection.
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We will now explain Jacobians and relative Jacobians, first in a general, set-theoretic setting,

and then for definable morphisms. This is done in several steps.

For any function h : A ⊂ Kn → Kn (in the set-theoretic sense of function) for some T -field K

and integer n > 0, let Jach : A → K be the determinant of the Jacobian matrix of h where this

matrix is well-defined (on the interior of A) and let Jach take the value 0 elsewhere in A.

In the relative case, consider a function f : A ⊂ C×Kn → C×Kn which makes a commutative

diagram with the projections to C, with K a T -field and with some set C. Write Jac/Cf : A→ K

for the function satisfying for each c ∈ C that (Jac/Cf)(c, z) = Jac(fc)(z) for each c ∈ C and each

z ∈ Kn with (c, z) ∈ A, and where fc : Ac → Kn is the function sending z to t with f(c, z) = (c, t)

and (c, z) ∈ A.

The existence of the relative Jacobian Jacg/X in the following definable context is clear by the

definability of the partial derivatives and continuity properties.

1.10.2 Lemma-Definition Consider a definable morphism g : A ⊂ X[n, 0, 0] → X[n, 0, 0]

over X for some definable subassignment X. By Jac/Xg denote the unique definable morphism

A→ h[1, 0, 0] satisfying for each T -field K that (Jac/Xg)K = Jac/XK
(gK) and call it the relative

Jacobian of g over X.

We can now formulate the change of variables formula, in a relative setting.

1.10.3 Theorem (Change of variables) Let F : Z ⊂ X[n, 0, 0] → Z ′ ⊂ X[n, 0, 0] be a definable

isomorphism over X for some X in Def. Then there exists a definable subassignment Y ⊂ Z whose

complement in Z has dimension < n over X, and such that the relative Jacobian Jac/XF of F

over X is nonvanishing on Y . Moreover, if we take the unique ϕ′ in C+(Z ′) with F ∗(ϕ′) = ϕ, then

ϕL−ordJac/XF is X-integrable if and only if ϕ′ is X-integrable, and then

µ/X(ϕL−ordJac/XF ) = µ/X(ϕ′)

in C+(X), with the convention that L−ord(0) = 0.

The proof of Theorem 1.10.3 relies on the Jacobian property for T . Finally we formulate a

general Fubini Theorem, in the Tonelli variant for non-negatively valued functions.

1.10.4 Theorem (Fubini-Tonelli) Let ϕ be in C+(Z) for some Z ⊂ X[n,m, r] and some X in

Def. Let X[n,m, r]→ X[n− n′,m−m′, r− r′] be a coordinate projection. Then ϕ is X-integrable

if and only if there exists a definable subassignment Y of Z whose complement in Z has dimension

< n over X such that, if we put ϕ′ = 1Y ϕ, then ϕ′ is X[n − n′,m − m′, r − r′]-integrable and

µ/X[n−n′,m−m′,r−r′](ϕ
′) is X-integrable. If this holds, then

µ/X(µ/X[n−n′,m−m′,r−r′](ϕ
′)) = µ/X(ϕ)

in C+(X).

The proof of Theorem 1.10.4 relies essentially on Lemma-Definition 1.9.1.

1.11 Direct image formalism

Let Λ be in Def. From now on, all objects will be over Λ, where we continue to use the notation

?/Λ instead of ?→ Λ to denote that some object ? is considered over Λ.

Consider X in DefΛ. For each integer d ≥ 0, let C≤d+ (X/Λ) be the ideal of C+(X) generated by
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characteristic functions 1Z of Z ⊂ X which have relative dimension ≤ d over Λ. Furthermore, we

put C≤−1
+ (X/Λ) = {0}.

For d ≥ 0, define Cd+(X/Λ) as the quotient of semi-groups C≤d+ (X/Λ)/C≤d−1
+ (X/Λ); its nonzero

elements can be seen as functions having support of dimension d and which are defined almost

everywhere, that is, up to definable subassignments of dimension < d.

Finally, put

C+(X/Λ) :=
⊕
d≥0

Cd+(X/Λ),

which is actually a finite direct sum since Cd+(X/Λ) = {0} for d larger than the relative dimension

of X over Λ.

We introduce a notion of isometries for definable subassignments. This is some work since also

residue ring and integer variables play a role.

1.11.1 Definition (Isometries) Consider Z := Z ∪ {−∞,+∞}. Extend the natural order on Z
to Z so that +∞ is the biggest element, and −∞ the smallest.

Define ord on h[1, 0, 0] as the extension of ord by ord(0) = +∞. Define ord on h[0,m, r] by

sending 0 to +∞ and everything else to −∞. Define ord on h[n,m, r] by sending x = (xi)i to

infi ord(xi).

Call a definable isomorphism f : Y → Z between definable subassignments Y and Z an isometry

if and only if

ord(y − y′) = ord(fK(y)− fK(y′))

for all T -fields K and all y and y′ in Y (K), where y − y′ = (yi − y′i)i. In the relative setting, let

f : Y → Z be a definable isomorphism over Λ. Call f an isometry over Λ if for all T -fields K and

for all λ ∈ Λ(K), one has that fλ : Yλ → Zλ is an isometry, where Yλ is the set of elements in

Y (K) that map to λ, and fλ is the restriction of fK to Yλ.

1.11.2 Definition (Adding parameters) Let f : Y → Z and f ′ : Y ′ → Z ′ be morphisms in

Def with Y ′ ⊂ Y [0,m, r] and Z ′ ⊂ Z[0, s, t] for some m, r, s, and t. Say that f ′ is obtained from

f by adding parameters, if the natural projections p : Y ′ → Y and r : Z ′ → Z are definable

isomorphisms and if moreover the composition r ◦ f ′ equals f ◦ p.

We will now define the integrable functions (over Λ) inside C+(X/Λ), denoted by IC+(X/Λ), for

any definable subassignment X/Λ. The main idea here is that integrability conditions should not

change under pull-backs along isometries and under maps obtained from the identity function by

adding parameters. Consider ϕ in C≤d+ (X/Λ) and its image ϕ in Cd+(X/Λ) for some definable sub-

assignment X/Λ over Λ. In general, one can write X as a disjoint union of definable subassignments

X1, X2 such that there exists a definable morphism f = f2 ◦ f1 : Z ⊂ Λ[d,m, r] → X2 for some

m, r, 1X1
ϕ = 0, f2 is an isometry over Λ, and f1 is obtained from the identity function X2 → X2

by adding parameters. Call ϕ integrable if and only if f∗(ϕ) is Λ-integrable as in Lemma-Definition

1.9.1. Note that this condition is independent of the choice of the Xi and f . This defines the grade

d part ICd+(X/Λ) of IC+(X/Λ), and one sets

IC+(X/Λ) :=
∑
d≥0

ICd+(X/Λ).

The following theorem gives the existence and uniqueness of integration in the fibers relative

over Λ (in all relative dimensions over Λ), in the form of a direct image formalism, by associating to

any morphim f : Y → Z in DefΛ a morphism of semi-groups f! from IC+(Y/Λ) to IC+(Z/Λ). This
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association happens to be a functor and the map f! sends a function to its integral in the fibers

relative over Λ (in the correct relative dimensions over Λ). The underlying idea is that isometries,

inclusions, and definable morphisms obtained by adding parameters from an identity map should

yield a trivial f! coming from the inverse of the pullback f∗, and further there is a change of

variables situation and a Fubini-Tonelli situation that should behave as in Section 1.10.

1.11.3 Theorem There exists a unique functor from DefΛ to the category of semi-groups, which

sends an object Z in DefΛ to the semi-group IC+(Z/Λ), and a definable morphism f : Y → Z

to a semi-group homomorphism f! : IC+(Y/Λ) → IC+(Z/Λ), such that, for ϕ in ICd+(Y/Λ) and a

representative ϕ0 in C≤d+ (Y/Λ) of ϕ one has:

M1 (Basic maps):

If f is either an isometry or is obtained from an identity map C → C for some C in Def by

adding parameters, then f!(ϕ) is the class in ICd+(Z/Λ) of (f−1)∗(ϕ0).

M2 (Inclusions):

If Y ⊂ Z and f is the inclusion function, then f!(ϕ) is the class in ICd+(Z/Λ) of the unique

ψ in C≤d+ (Z/Λ) with f∗(ψ) = ϕ0 and ψ1Y = ψ.

M3 (Fubini-Tonelli):

If f : Y = Λ[d,m, r] → Z = Λ[d− d′,m−m′, r − r′] is a coordinate projection, then ϕ0 can

be taken by Theorem 1.10.4 such that it is Λ[d− d′,m−m′, r − r′]-integrable and then f!(ϕ) is

the class in ICd−d
′

+ (Λ[d− d′,m−m′, r − r′]/Λ) of

µ/Λ[d−d′,m−m′,r−r′](ϕ
0).

M4 (Change of variables):

If f is a definable isomorphism over Λ[0,m, r] with Y ⊂ Λ[d,m, r] and Z ⊂ Λ[d,m, r] then

ϕ0 and a ψ ∈ C≤d+ (Y/Λ) can be taken by Theorem 1.10.3 such that ϕ0 = ψL−ordJac/Λ[0,m,r]f , and

then f!(ϕ) is the class in ICd+(Z/Λ) of (f−1)∗(ψ).

Theorem 1.11.3 thus yields a functor from the category DefΛ to the category with objects

IC+(Z/Λ) and with homomorphisms of semi-groups (or even of semi-modules over C+(Λ) ) as

morphisms. This functor is an embedding (that is, injective on objects and on morphisms). The

functoriality property (g ◦ f)! = g! ◦ f! is a flexible form of a Fubini Theorem.

Note that C+(X/Λ) is a graded C+(X)-semi-module (but not so for IC+(X/Λ) which is just a

graded C+(Λ)-semi-module). Using this module structure, we can formulate the following form of

the projection formula.

1.11.4 Proposition For every morphism f : Y → Z in DefΛ, and every α in C+(Z) and β in

IC+(Y/Λ), αf!(β) belongs to IC+(Z/Λ) if and only if f∗(α)β is in IC+(Y/Λ). If these conditions

are verified, then f!(f
∗(α)β) = αf!(β).

The analogy with the direct image formalism of Theorem 14.1.1 of [9] with S = Λ is now com-

plete. An important ingredient of the proof of Theorem 1.11.3 is that general definable morphisms

can be factored, at least piecewise, into definable morphisms of the specified simple types falling

under M1 up to M4.

1.11.5 Comparison with [19]

We end the paper by comparing our motivic integrals with the ones in [19] by means of specializa-

tion. Let R be a complete discrete valuation ring with fraction field K and perfect residue field k.
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In [19], motivic integration on smooth rigid varieties over K was developed. We shall now compare

it with the approach in the present paper in unequal characteristic (although it works similarly in

equal characteristic zero).

Let X be a smooth quasi-compact and separated rigid variety over K endowed with a gauge

form ω. Assume that K has unequal characteristic. Note that, if we write p for the residue field

characteristic of K and e for the ramification degree of K, one can naturally consider X(L) for

any complete (0, p, e)-field L. Consider the analytic theory T = TK with language LK , as in 2 of

Section 1.3.1. Then we can look at X as a definable subassignment (by using affine charts). One

may define
∫
X
|ω| using definable morphisms as charts and as transition functions, say for X of

dimension n. For each chart in a finite disjoint covering of X by (definable) charts, one takes the

pullback of ω on that chart to get a volume form on an open definable subassignment O of h[n, 0, 0].

One then expresses the latter as a multiple f of dx1 ∧ . . . ∧ dxn, where clearly f is a definable

morphism to h[1, 0, 0]. Finally one integrates L−ordf on O as is defined in section 1.9, with the

convention that L−ord(0) = 0, and one takes the sum for all the charts, where integrability follows

from the quasi-compactness assumption. This is well defined thanks to the Change of Variables

Theorem 1.10.3.

We will now link this integral
∫
X
|ω| to the integral as defined in [19]. Let K0(Vark) be the

Grothendieck ring of varieties over k, moded out by the extra relations [X] = [f(X)], for f : X → Y

radicial. Note that radicial means that for every algebraically closed field ` over k the induced map

X(`) → Y (`) is injective, and that [f(X)] is an abbreviation for the class of the constructible set

given as the image of f by Chevalley’s Theorem. (In the case that the characteristic of k is zero,

the extra relations would be redundant.) In any case, this ring is isomorphic to the Grothendieck

ring of definable sets with coefficients from k for the theory of algebraically closed fields in the

language of rings.

Similarly as the morphism γ as in Section 16.3 of [9], there is a canonical morphism δ :

C+(point)→ K0(Vark)⊗A. Indeed, we may note that C+(point) is isomorphic to A+⊗ZQ+(point),

and for x =
∑r
i=1 ai ⊗ bi with ai ∈ A+ and bi ∈ Q+(point), we may set δ(x) =

∑
i[bi]⊗ ai, where

[bi] is the class in K0(Vark) of the constructible set obtained from bi by elimination of quantifiers

for the theory of algebraically closed fields in the language of rings (Chevalley’s Theorem).

In [19] an integral
∫ LS
X
|ω| in the localization of K0(Vark) with respect to the class of the affine

line is defined. Hence we may consider the image of
∫ LS
X
|ω| in the further localization K0(Vark)⊗A.

1.11.6 Proposition Let X be a smooth separated rigid variety over K endowed with a gauge

form ω. Assume that K has unequal characteristic and that X is quasi-compact. Then, with the

above notation, δ(
∫
X
|ω|) is equal to the image of

∫ LS
X
|ω| in K0(Vark)⊗ A.
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