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Multivariate Igusa Theory: Decay Rates of Exponential Sums

Raf Cluckers

1 Introduction

For f = (f1, . . . , fr) an r-tuple of restricted power series over Qp in the variables x =

(x1, . . . , xn) and for y ∈ Qr
p, we consider the exponential integral

Ef(y) =

∫
Zn

p

ψ
(
y · f(x))|dx|, (1.1)

where ψ is a nontrivial additive character on Qp, |dx| denotes the normalized Haar mea-

sure on Qn
p , and y · f(x) =

∑
j yjfj(x).

With |y| = max(|yi|)i and � the Vinogradov symbol, we obtain the following gen-

eral upper bounds.

Theorem 1.1. If f(Zn
p) has nonempty interior in Qr

p, there exists a real number α < 0 such

that

Ef(y) � min
{
|y|α, 1

}
. (1.2)

�

In his book [9], Igusa proves Theorem 1.1 in the case when r = 1with f = f1 a non-

constant homogeneous polynomial, and he formulates the problem of generalizing this

to the case of r > 1. In this case Igusa is also able to give an explicit α < 0 in terms of

the numerical data of an embedded resolution of f. By a very fine analysis of embedded
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4094 Raf Cluckers

resolutions of f, Lichtin [11] is able to prove Theorem 1.1 in the case of a dominant map

of r = 2 polynomials, where he also gives an explicit α < 0 in terms of the geometry of f.

At present, these proofs seem to be difficult to be generalized to the case of r > 2 poly-

nomials. In the case of one nonconstant polynomial f = f1, Theorem 1.1 can be proven

by elementary methods, see, for instance, the work of Čubarikov [2] and Loxton [12].

In the last section we show how the results of [2] can be used to derive Theorem 1.1,

when f1, . . . , fr are polynomials, in a very short way (even with explicit upper bounds

and weaker suppositions). We indicate there why the situation for analytic maps is more

difficult.

1.1

In this paper we present a new technique to study exponential integrals of a general

nature, namely, by studying rather general p-adic integrals by means of p-adic cell de-

composition and the theory of subanalytic sets. Examples of such general exponential

integrals are given below. These techniques are also used in other contexts, for example,

by Denef [3] to prove the rationality of the Serre-Poincaré series associated to the p-adic

points on a variety.

1.2

For readers not familiar with p-adic integration, we indicate how Ef(y) can be under-

stood as an exponential sum. In the case when the fi are restricted power series over Zp,

ψ(x) = exp(2πi(xmod Zp)) (abbreviated by exp(2πix)), and

y =

(
u1

pm
, . . . ,

ur

pm

)
, (1.3)

with ui integers satisfying (u1, . . . , ur, p) = 1,m ≥ 0, we can write

Ef(y) =
1

pmn

∑
x∈(Zp/pm)n

exp


2πi

r∑
j=1

ujfj(x)

pm


 . (1.4)
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Decay Rates of Exponential Sums 4095

Note that for general y ′ ∈ Qr
p there can always be found a tuple y of the form (1.3) such

that Ef(y ′) = Ef(y). Theorem 1.1 then says that |Ef(y)| can be bounded by cpmα for some

c > 0 and α < 0, uniform in y.

1.3

We use the notion of subanalytic sets as in [8] and the recent notion of subanalytic con-

structible functions as in [1] (see below for the definitions).

Let G : Qr
p → Q be an integrable subanalytic constructible function and let

G∗(y) :=
∫

Qr
p
G(x)ψ(x · y)|dx| be its Fourier transform. We obtain the following general

upper bounds.

Theorem 1.2. There exists a real number α < 0 such that G∗(y) � min{|y|α, 1}. �

1.4

We indicate how Theorem 1.1 follows from Theorem 1.2. It is well known that, whenever

f(Zn
p) has nonempty interior in Zr

p, Ef is the Fourier transform of an integrable function

Ff : Qr
p → Q (see [9] or [15]). We prove that we can take Ff to be a subanalytic con-

structible function (see Theorem 3.1 below). Theorem 1.1 then follows immediately from

Theorem 1.2.

In fact, a similar reasoning leads to the following much more general result.

Theorem 1.3. If f : Qn
p → Qr

p is a subanalytic map and φ : Qn
p → Q is an integrable

subanalytic constructible function such that the support of φ is contained in f−1

(Regular values of f) ∪ A, with A a set of measure zero, then there exists a real number

α < 0 such that Eφ,f(y) � min{|y|α, 1}, with

Eφ,f(y) :=

∫
Qn

p

φ(x)ψ
(
y · f(x))|dx|. (1.5)

�

We end Section 5 with an open question about what happens if f is analytic but

no longer subanalytic. All results of the paper also hold for finite field extensions of Qp.

Possible applications, or possible subjects for future research, lie in the search

for candidate exponents α of Theorem 1.1 using the numerical data of a (parameterized)

resolution of singularities of the family
∑r

i=1 uifi with parameters ui (if such resolution

exists); as noted before, candidate exponents can be found in this way when r = 1, see [6].

Also, one can try to establish, under similar conditions as in [9], an analytic analogue of

the Poisson summation formula considered by Igusa [9].
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4096 Raf Cluckers

1.5 Notation and terminology

We fix a p-adic field K (i.e., [K : Qp] is finite) and write R for the valuation ring of K, π0 for

a uniformizer of R, and q for the cardinality of the residue field. For x ∈ K, v(x) ∈ Z ∪ {∞}

denotes the p-adic valuation of x and |x| = q−v(x) the p-adic norm. We write Pn for the

collection of nth powers in K× = K \ {0}, n > 0, and λPn = {λx | x ∈ Pn} for λ ∈ K. Let ψ

be a nontrivial additive character on K. We write x · y = x1y1 + · · · + xnyn for x, y ∈ Kn,

n > 0.

The Vinogradov symbol� has its usual meaning, namely that for complex-valued

functions f and g with g taking nonnegative real values, f � g means |f| ≤ cg for some

constant c.

A restricted analytic function Rn → K is an analytic function given by a single

restricted power series over K in n variables (by definition, this is a power series over K

which converges on Rn). We extend each restricted analytic function Rn → K to a function

Kn → K by putting it zero outside Rn. A key notion is the following.

Definition 1.4. A subset of Kn is called (globally) subanalytic if it can be obtained in

finitely many steps by taking finite unions, intersections, complements, and linear pro-

jections of zero loci of polynomials and of zero loci of restricted analytic functions in

Kn+e, e ≥ 0. A function f : X ⊂ Km → Kn is called subanalytic if its graph is a subanalytic

set.

We recall a basic result on subanalytic sets.

Proposition 1.5 (see [8, Proposition 3.29]). Let X ⊂ Kn be a subanalytic set and f : X → K

a subanalytic function. Then there exists a finite partition of X into p-adic submanifolds

Aj of Kn such that the restriction of f to each Aj is analytic and such that each Aj is

subanalytic. �

We refer to [1, 5, 7, 8, 13] for the theory of subanalytic sets.

2 Cell decomposition and p-adic integration

Cell decomposition is well suited to describe piecewise several kinds of p-adic maps,

for example, polynomial maps, restricted analytic maps, subanalytic constructible func-

tions, and so on. It allows one to partition the domain of such functions into p-adic mani-

folds of a simple form, called cells, and to obtain on each of these cells a nice description

of the way the function depends on a specific special variable (for an example of such

an application, see Lemma 2.5). By induction one gets a nice description of the function

with respect to the other variables.
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Decay Rates of Exponential Sums 4097

Cells are defined by induction on the number of variables.

Definition 2.1. A cell A ⊂ K is a (nonempty) set of the form

{
t ∈ K | |α|�1|t − c|�2|β|, t − c ∈ λPn

}
, (2.1)

with constantsn > 0, λ, c ∈ K,α,β ∈ K×, and �i either< or no condition. A cellA ⊂ Km+1,

m ≥ 0, is a set of the form

{
(x, t) ∈ Km+1 | x ∈ D, ∣∣α(x)

∣∣�1

∣∣t − c(x)
∣∣�2

∣∣β(x)
∣∣, t − c(x) ∈ λPn

}
, (2.2)

with (x, t) = (x1, . . . , xm, t), n > 0, λ ∈ K, D = πm(A) a cell, where πm is the projection

Km+1 → Km, subanalytic functions α,β : Km → K× and c : Km → K, and �i either < or

no condition, such that the functions α, β, and c are analytic onD. We call c the center of

the cell A and λPn the coset of A.

Note that either a cell is the graph of an analytic function defined on D (namely

if λ = 0) or, for each x ∈ D, the fiber Ax = {t | (x, t) ∈ A} is nonempty open (if λ �= 0).

Theorem 2.2 (p-adic cell decomposition, [1]). Let X ⊂ Km+1 be a subanalytic set and fj :

X → K subanalytic functions for j = 1, . . . , r. Then there exists a finite partition of X into

cells Ai with center ci and coset λiPni
such that

∣∣fj(x, t)∣∣ =
∣∣δij(x)

∣∣ · ∣∣∣(t − ci(x)
)aij

λ
−aij

i

∣∣∣1/ni

, for each (x, t) ∈ Ai, (2.3)

with (x, t) = (x1, . . . , xm, t), integers aij, and δij : Km → K subanalytic functions, analytic

on πm(Ai), j = 1, . . . , r. If λi = 0, the convention that aij = 0 is used. �

Theorem 2.2 is a generalization of cell decomposition for polynomial maps by

Denef [3, 4]. Recently, in [1, 7], cell decomposition has been used to study parametrized

integrals as follows.

Definition 2.3. For each subanalytic set X, let C(X) be the Q-algebra generated by the

functions |h| and v(h) for all subanalytic functions h : X → K×. Call G ∈ C(X) a sub-

analytic constructible function on X.

To any function G in C(Km+n),m,n ≥ 0, we associate a function Im(G) : Km → Q

by putting

Im(G)(x) =

∫
Kn

G(x, y)|dy| (2.4)

if the function y �→ G(x, y) is absolutely integrable for all x ∈ Km, and by putting

Im(G)(x) = 0 otherwise.

 at E
T

H
 Z

Ã
¼

rich on A
pril 9, 2014

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/
http://imrn.oxfordjournals.org/


4098 Raf Cluckers

Theorem 2.4 (basic theorem on p-adic analytic integrals [1]). For any function G ∈
C(Km+n), the function Im(G) is in C(Km). �

Lemma 2.5. Let X ⊂ Km+1 be a subanalytic set and letGj be functions in C(X) in the vari-

ables (x1, . . . , xm, t) for j = 1, . . . , r. Then there exists a finite partition of X into cells Ai

with center ci and coset λiPni
such that each restrictionGj|Ai

is a finite sum of functions

of the form

∣∣∣(t − ci(x)
)a
λ−a

i

∣∣∣1/ni

v
(
t − ci(x)

)s
h(x), (2.5)

where h : Km → Q is a subanalytic constructible function, and s ≥ 0 and a are integers.

Also, for any functionG ∈ C(Kn), there exists a closed subanalytic setA ⊂ Kn of measure

zero such that G is locally constant on Kn \A. �

Proof. The description is immediate from Theorem 2.2 and the definitions. The state-

ment about G ∈ C(Kn) follows from Proposition 1.5 and the definitions. �

The following corollary is immediate.

Corollary 2.6. LetG be in C(K). Suppose that if |y| tends to ∞ thenG(y) converges to zero.

Then there exists a real number α < 0 such that G(y) � |y|α. �

We prove the following addendum to Theorem 2.4.

Proposition 2.7. Let G in C(Kr+n) be such that G(x, ·) : Kn → Q is integrable for almost

all x ∈ Kr. Then there exists a function F ∈ C(Kr) such that for all x ∈ Kr \ B, with B a

subanalytic set of measure zero,

F(x) =

∫
Kn

G(x, y)|dy|. (2.6)
�

Proof. By induction and by Fubini’s theorem, it is enough to treat the case n = 1.

By Lemma 2.5,we can partitionKr+1 into cellsAwith center c and coset λPm such

that G|A is a finite sum of functions of the form

H(x, y) =

∣∣∣(y − c(x)
)a
λ−a

∣∣∣1/m

v
(
y − c(x)

)s
h(x), (2.7)

where h : Kr → Q is a subanalytic constructible function, and s ≥ 0 and a are integers.
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Decay Rates of Exponential Sums 4099

Claim 1. Possibly after refining the partition, we can assure that for each A either the

projection A ′ := πr(A) ⊂ Kr has zero measure or we can write G|A as a sum of terms H of

the form (2.7) such that the function H(x, ·) is integrable over Ax := {y | (x, y) ∈ A} for all

x ∈ A ′. �

First we prove the claim. By partitioning further, we may suppose that either

v(y − c) is constant on A or it takes infinitely many values on A, and in the case when

v(y−c) is constant onA, we may assume that a = s = 0. Regroup the terms with the same

exponents (a, s) by summing up the respective functions h.

By the description (2.7) of H and by the definition of cells, the fact that the

function

H(x, ·) : Ax −→ Q : y �−→ H(x, y) (2.8)

is integrable over Ax only depends on the exponents (a, s), on whether h(x) is zero or

not, and on the particular form of the cell Ax. Also, if terms H1, . . . , Hk have different

exponents (ai, si), then they have a different asymptotical behavior for y going to c(x)

with x fixed, and hence, if their sum is integrable overAx, then eachHi is integrable over

Ax.

Suppose now that A has nonempty interior. LetH be a term with exponents (a, s)

and function h as in (2.7). Then, either h(x) is almost everywhere zero or there exists by

Lemma 2.5 a nonempty openU ⊂ A ′ such that h(x) is constant and nonzero onU. If there

exists such nonemptyU, then, by the above discussion, the termH(x, ·) is integrable over

Ax for each x ∈ U and hence for each x ∈ A ′. If h(x) is almost everywhere zero, then

we can, by partitioning A ′ further using Lemma 2.5, reduce to the case when A ′ has zero

measure or h(x) is identically zero on A ′, in which case we can skip the term H. This

proves the claim.

Suppose that the statements of the claim are fulfilled for our partition of Kr+1

into cells. Let P be the set of cellsA such that πr(A) has measure zero. PutB := ∪A∈Pπr(A)

and C := ∪A∈PA. Let G ′ be the constructible function G(1 − χC), where χC is the charac-

teristic function of C. Then, B has measure zero in Kr, G ′ satisfies

∫
K

G(x, y)|dy| =

∫
K

G ′(x, y)|dy| (2.9)

for all x ∈ Kr \B, andG ′(x, ·) is integrable for all x ∈ Kr. Putting F := Ir(G ′), an application

of Theorem 2.4 ends the proof. �
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4100 Raf Cluckers

3 Exponential sums as Fourier transforms

We fix a nontrivial additive character ψ on K. For φ ∈ C(Kn) an integrable function, for

f : Kn → Kr a subanalytic function, and for y ∈ Kr, we consider the exponential integral

Eφ,f(y) =

∫
Kn

φ(x)ψ
(
y · f(x))|dx|. (3.1)

We call z ∈ Kr a regular value of f if f−1(z) is nonempty, if f is C1 on a neighborhood of

f−1(z), and if the rank of the Jacobian matrix of f is maximal at each point x ∈ f−1(z). We

denote the set of regular values of f by Regf and the support of φ by Suppφ .

Theorem 3.1. Let f : Kn → Kr be a subanalytic function and let φ ∈ C(Kn) be an inte-

grable function satisfying Suppφ ⊂ f−1(Regf) ∪ A with A a set of measure zero. Then

there exists an integrable function Fφ,f in C(Kr) such that for any bounded continuous

function G : Kr → C,

∫
Kr

Fφ,f(z)G(z)|dz| =

∫
Kn

φ(x)G
(
f(x)

)
|dx|, (3.2)

and hence, the following Fourier transformation formula holds:

Eφ,f(y) =

∫
z∈Kr

Fφ,f(z)ψ(z · y)|dz|. (3.3)
�

Theorem 3.1 is a generalization of [7, Corollary 1.8.2] by Denef, which treats the

case when the fi are polynomials and φ is a Schwartz-Bruhat function. Igusa has given

an analogon of Theorem 3.1 in the case of r = 1 polynomial (cf. the asymptotic expan-

sions of [9]), and Lichtin [10] has given one in the case of r = 2 polynomials, both in the

case when φ is a Schwartz-Bruhat function. Igusa and Lichtin also relate the asymptotic

expansions to the numerical data of an embedded resolution of f, the counterpart (how-

ever not easily computable) of which would be here to apply cell decomposition to get

explicit asymptotic expansions for given f and φ.

Note that Fφ,f is determined, up to a set of measure zero, by the universal prop-

erty stated in the theorem. The function Fφtriv,f, with φtriv the characteristic function of

Rn and f a dominant polynomial mapping, is called the local singular series of f and plays

an important role in number theory, for example, in the circle method.
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Decay Rates of Exponential Sums 4101

Proof of Theorem 3.1. Clearly f−1(Regf) is subanalytic. Without loss of generality, we

may assume that for all x ∈ f−1(Regf) one has

J(x) := det

(
∂fi

∂xj

(x)
)

i,j=1,...,r

�= 0. (3.4)

By the inverse function theorem, Proposition 1.5, [8, Theorem 3.2] on the exis-

tence of bounds, and the subanalytic selection theorem [8, Theorem 3.6], we may also

suppose that

T : f−1
(

Regf

) −→ Kn : x �−→ y =
(
f(x), xr+1, . . . , xn

)
(3.5)

is injective and a C1 bijection onto its image with C1 inverse. Applying the change-of-

variables formula, we obtain

∫
Kn

φ(x)G
(
f(x)

)
|dx| =

∫
f−1(Regf)

φ(x)G
(
f(x)

)
|dx|

=

∫
T (f−1(Regf))

φ ◦ T−1(y)G
(
y1, . . . , yr

)∣∣J ◦ T−1(y)
∣∣−1

|dy|.

(3.6)

By Fubini’s theorem and Proposition 2.7, there exists a function Fϕ,f in C(Kr) with the

property that

Fϕ,f

(
y1, . . . , yr

)
=

∫
Kn−r

φ ◦ T−1(y)
∣∣J ◦ T−1(y)

∣∣−1∣∣dyr+1 ∧ · · · ∧ dyn

∣∣, (3.7)

for almost all (y1, . . . , yr) ∈ Kr, where we have extended the integrand by zero to Kn−r.

This function clearly satisfies the requirements of the theorem. �

4 Estimates for Fourier transforms

For an integrable function G in C(Kr), we write G∗ for its Fourier transform

G∗ : Kr −→ C : y �−→
∫
Kr

G(x)ψ(x · y)|dx|. (4.1)

The following is a generalization of Theorem 1.2.
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4102 Raf Cluckers

Theorem 4.1. For each integrable G ∈ C(Kr), there exists a real number α < 0 such that

G∗(y) � min{|y|α, 1}. �

Proof. For simplicity, we suppose thatψ(R) = 1 andψ(x) �= 1 for x �∈ R (any other additive

character is of the form x �→ ψ(ax) with a ∈ K). It is clear that G∗(y) � 1 since

∣∣G∗(y)
∣∣ ≤ ∫

Kr

∣∣G(x)
∣∣|dx| < ∞. (4.2)

Hence, it is enough to prove, for i = 1, . . . , r, that

G∗(y) � ∣∣yi

∣∣αi (4.3)

for some αi < 0. We prove that G∗(y) � |yr|
αr for some αr < 0. Write x = (x̂, xr) with

x̂ = (x1, . . . , xr−1). By Lemma 2.5, we can partition Kr into cells Awith center c and coset

λPm such that G|A is a finite sum of functions of the form

H(x) =

∣∣∣(xr − c(x̂)
)a
λ−a

∣∣∣1/m

v
(
xr − c(x̂)

)s
h(x̂), (4.4)

where h : Kr−1 → Q is a subanalytic constructible function, and s ≥ 0 and a are integers.

Claim 2. Possibly after refining the partition, we can assure that for each A either the

projection A ′ := πr−1(A) ⊂ Kr has zero measure or we can write G|A as a sum of terms H

of the form (4.4) such that H is integrable over A and H(x̂, ·) is integrable over Ax̂ := {xr |

(x̂, xr) ∈ A} for all x̂ ∈ A ′. Moreover, doing so, we can assure that each such term H does

not change its sign on A. �

As this claim and its proof are similar to Claim 1 we will give only an indication

of its proof.

Partitioning further, we may suppose that v(xr − c(x̂)) does not change its sign on

A, and that it takes either only one value onA or infinitely many values. If v(xr−c(x̂)) only

takes one value onA, we may suppose that the exponents a and s as in (4.4) are zero. Now

apply Lemma 2.5 to each h and to the norms of all the subanalytic functions appearing in

the description of the cells A in a similar way (in particular, make similar assumptions

as above). Do this inductively for each variable. This way, the claim is reduced to a sum-

mation problem over (Presburger set of) integers, which is easily solved (cf. the proof of

Claim 1). This proves the claim.
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Decay Rates of Exponential Sums 4103

Fix a cell A and a termH as in the claim. The cell A has, by definition, the follow-

ing form:

A =
{
x | x̂ ∈ A ′, v

(
α(x̂)

)
�1v

(
xr − c(x̂)

)
�2v

(
β(x̂)

)
, xr − c(x̂) ∈ λPm

}
, (4.5)

where A ′ = πr−1(A) is a cell, �i is < or no condition, and α,β : Kr−1 → K× and c : Kr−1 →
K are subanalytic functions. We focus on a cell A with nonempty interior, in particular,

λ �= 0 and A ′ has nonempty interior. For x̂ ∈ A ′ and y ∈ Kr, we denote by I(x̂, y) the value

I(x̂, y) =

∫
xr∈Ax̂

H(x)ψ(x · y)∣∣dxr

∣∣. (4.6)

Let χλPm : K → Q be the characteristic function of λPm and write ŷ = (y1, . . . , yr−1). We

easily find that I(x̂, y) equals

ψ
(
x̂ · ŷ + cyr

)
h(x̂)|λ|−a/m

∑
(4.8)

q−ja/mjs
∫
v(xr−c)=j

χλPm

(
xr − c

)
ψ

((
xr − c

)
yr

)∣∣dxr

∣∣,
(4.7)

where c = c(x̂) and the summation is over

{
j | v

(
α(x̂)

)
�1j�2v

(
β(x̂)

)}
. (4.8)

By Hensel’s lemma, there exists an integer e such that all unitsuwithu≡1modπe
0

aremth powers (here, π0 is such that v(π0) = 1). Hence

∫
v(u)=j

χλPm(u)ψ
(
uyr

)
|du| (4.9)

is zero whenever j + v(yr) + e < 0 (since, in this case, one essentially sums a nontriv-

ial character over a finite group). In consequence, the only terms contributing to the

sum (4.7) are those for which −v(yr) − e ≤ j.
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We thus have

∣∣∣∣
∫
x∈A

H(x)ψ(x · y)|dx|
∣∣∣∣ =

∣∣∣∣
∫
x̂∈A ′

I(x̂, y)
∣∣dx̂∣∣∣∣∣∣ (4.10)

≤
∫
Byr

∣∣H(x)
∣∣|dx| (4.11)

with Byr = {x ∈ Kr | x ∈ A, −v(yr) − e ≤ v(xr − c(x̂))}.

The integrability of H over A, the fact that H does not change its sign on A, and

Theorem 2.4 imply that the integral (4.11), considered as a function in the variable yr, is

in C(K).

Next we prove that (4.11) goes to zero when |yr| goes to infinity. First suppose that

A is contained in a compact set. Since Byr ⊂ A, the measure of Byr , and hence also (4.11),

goes to zero when |yr| tends to infinity. In the case when A is not contained in a compact

set, let Ab be the intersection of A with (πb
0R)r, for b < 0. Clearly each Ab is contained

in a compact set. Also, for each ε > 0, there exists a b0 such that for each b < b0 and for

each yr, one has
∫

Byr\Ab
|H(x)||dx| < ε, by the integrability of H over A. By the previous

discussion,
∫

Byr∩Ab
|H(x)||dx|, and hence also (4.11), goes to zero when |yr| goes to ∞.

An application of Corollary 2.6 now finishes the proof. �

Remark 4.2. The fact that |G∗| in Theorem 4.1 goes to zero when |y| goes to infinity also

follows directly from the lemma of Riemann-Lebesgue in general Fourier analysis (cf.

the section on Fourier transforms in [14]). However, to know this is not enough to apply

Corollary 2.6 as is done to finish the proof of Theorem 4.1 since, in general, |G∗| is not

subanalytic constructible.

5 Decay rates of exponential sums

We use the notation of Section 3 for Eφ,f. Combining Theorem 4.1 with the Fourier trans-

formation formula of Theorem 3.1, we obtain the following generalization of Theorem

1.3.

Theorem 5.1. If f : Kn → Kr is a subanalytic map and φ ∈ C(Kn) is integrable and satis-

fies Suppφ ⊂ f−1(Regf)∪AwithA a set of measure zero, then there exists a real number

α < 0 such that

Eφ,f(y) � min
{
|y|α, 1

}
. (5.1)

�
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Combining this theorem with the fact that the set of singular points of a domi-

nant polynomial mapping Kn → Kr (or a dominant restricted analytic mapping Rn → Kr)

has measure zero, we obtain the following corollary.

Corollary 5.2. If f : Kn → Kr is a dominant polynomial mapping and if φ ∈ C(Kn) is

integrable, then there exists α < 0 such that (5.1) holds. The same conclusion holds for

Eφ,f with f : Rn → Kr a restricted analytic map, extended by zero to a map Kn → Kr, such

that f(Rn) has nonempty interior in Kr. �

5.1

We end this section with an open question. Let f = (f1, . . . , fr) : Kn → Kr be an analytic

map given by r power series f1, . . . , fr ∈ K[[x]] which converge on the whole ofKn. Suppose

that φ ∈ C(Kn) is integrable and that f(Kn) contains a nonempty open set. The question

is whether there exists an α < 0 such that

∫
Kn

φ(x)ψ
(
y · f(x))|dx| � min

{
|y|α, 1

}
. (5.2)

6 Polynomial mappings

In this section we use elementary methods to deduce explicit upper bounds for polyno-

mial exponential sums. Theorem 6.1 below is of a nature different than our main Theorem

5.1 (and its proof is much more easy), in the sense that it uses the degree of the polyno-

mial mapping as exponent in the upper bound. Such bound based on the degree would

give a trivial bound when naively adapted to the analytic case. Similar problems occur

when the explicit bounds of Loxton [12] are naively adapted to the analytic case. Since

we use a result of [2] formulated there for polynomials over Z, we will work over Qp.

For g a polynomial in Qp[x] with x = (x1, . . . , xn), let dj(g) be the degree of g with

respect to the variable xj for j = 1, . . . , n, and let e(g) be the minimum of the p-adic orders

of the coefficients of g(x)−g(0). For f = (f1, . . . , fr) a tuple of polynomials in Qp[x], let d(f)

be maxij(dj(fi)).

A function φ : Qn
p → Q is a Schwartz-Bruhat function if it is locally constant and

has compact support. In this section we consider

Eφ,f(y) =

∫
Qn

p

φ(x)ψ
(
y · f(x))|dx|, (6.1)

with f = (f1, . . . , fr) a tuple of polynomials in Qp[x], φ : Qn
p → Q a Schwartz-Bruhat func-

tion, ψ a nontrivial additive character on Qp, and y ∈ Qr
p.
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By elementary methods we easily deduce the following from the work of

Čubarikov [2].

Theorem 6.1. Suppose that f1, . . . , fr are polynomials in x = (x1, . . . , xn) over Qp which

satisfy that
∑

i aifi + a0 = 0 implies ai = 0 for ai ∈ Qp and i = 0, . . . , n. Let φ : Qn
p → Q be

a Schwartz-Bruhat function. Then, for any ε > 0,

Eφ,f(y) � min
{
|y|ε−1/d(f), 1

}
. (6.2)

Moreover, for ywith v(y) < 0,

Eφ,f(y) �
(

− v(y)
)n−1

|y|−1/d(f). (6.3)
�

Proof. For simplicity, we may assume that ψ(Zp) = 1 and ψ(x) �= 1 for x �∈ Zp, and that

at least one coefficient of f1(x) − f1(0) has p-adic order 0. Since φ is a finite linear com-

bination of characteristic functions of compact balls, we may moreover assume that φ is

φtriv, that is, the characteristic function of Zn
p . Čubarikov in [2, Lemma 3] proves that for

any polynomial g ∈ Z[x] with e(g) = 0, d(g) ≤ d for some d ∈ N, and each z ∈ Qp with

v(z) < 0, one has

∣∣Eφtriv,g(z)
∣∣ < c(d, n)

(
− v(z)

)n−1
|z|−1/d (6.4)

with c(d, n) a constant depending only on d and n.

Rewrite Eφ,f(y) as

E ′(z, u1, . . . , ur

)
=

∫
Zn

p

ψ
(
z
(
u · f(x)))|dx|, (6.5)

with z ∈ Qp, u ∈ Zr
p with |u| = 1, and y = (zu1, . . . , zur). For any such u, the number d(u ·f)

cannot exceed d(f). By the compactness of {u ∈ Zr
p | |u| = 1}, also the number e(u · f) is

bounded uniformly in u, say, by N, since otherwise
∑

i aifi + a0 = 0 for some nontrivial

ai ∈ Qp.

One easily deduces from the mentioned result of [2] that for v(z) < −N,

∣∣E ′(z, u1, . . . , ur

)∣∣ < c(d(f), n
)
pN/d(f)( − v(z)

)n−1
|z|−1/d(f), (6.6)

with c(d(f), n) as above. The theorem follows. �
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Remark 6.2. Note that from the proof of Theorem 6.1 and [2, Lemma 3], one can construct

a (nonoptimal) constant c, depending only onψ,φ, and f, such that for each ywith v(y)<0,

∣∣Eφ,f(y)
∣∣ < c( − v(y)

)n−1
|y|−1/d(f). (6.7)

We leave the determination of the optimal c to a future work.
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