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Abstract. We prove the remaining part of the conjecture by Denef and Sper-
ber [Denef, J. and Sperber, S., Exponential sums mod pn and Newton poly-
hedra, Bull. Belg. Math. Soc., suppl. (2001) 55-63] on nondegenerate local
exponential sums modulo pm. We generalize Igusa’s conjecture in the intro-
duction of [Igusa, J., Lectures on forms of higher degree, Lect. Math. Phys.,
Springer-Verlag, 59 (1978)] from the homogeneous to the quasi-homogeneous
case and prove the nondegenerate case as well as the modulo p case. We
generalize some results by Katz in [Katz, N. M., Estimates for “singular” ex-
ponential sums, Internat. Math. Res. Notices (1999) no. 16, 875-899] on finite
field exponential sums to the quasi-homogeneous case.

1. Introduction

1.1. Global sums: From homogeneous to quasi-homogeneous. Let f be a
polynomial over Z in n variables. As in [1], [2], we look at the “global” exponential
sums

Sf (
1

N
) :=

1

Nn

∑
x∈{0,...,N−1}n

exp(2πi
f(x)

N
),

where N varies over the positive integers. In order to bound |Sf (1/N)|, it suffices
to find bounds when N = pm for integers m > 0 and prime numbers p.

When f is homogeneous and nondegenerate w.r.t. its Newton polyhedron at
zero, Igusa’s conjecture for the toric resolution of f conjectures that there exists
c > 0 such that

|Sf (
1

pm
)| < cp−σmmn−1,

for all primes p and integers m > 0, where σ is the largest rational number such
that (1/σ, . . . , 1/σ) lies on the Newton polyhedron at zero Δ0(f) of f . In a later
paper, Denef and Sperber conjectured for the same f that the stronger bound

|Sf (
1

pm
)| < cp−σmmκ−1

holds for some c, uniformly in large enough primes p and all integers m > 0, with κ
the codimension in Rn of the smallest face of Δ0(f) which contains (1/σ, . . . , 1/σ).
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Both these conjectures are proved by Denef and Sperber [3] under the extra condi-
tion that no vertex of Δ0(f) belongs to {0, 1}n and by the author [1] in general.

In this paper, we show that both these conjectures also hold when f is quasi-
homogeneous and nondegenerate w.r.t. Δ0(f). Quasi-homogeneous means that
there exist integers ai > 0 such that f(xa1

1 , . . . , xan
n ) is homogeneous. This gives

evidence to our conjecture of [2] that the analogue of Igusa’s conjecture for expo-
nential sums of [4] holds for all quasi-homogeneous polynomials, and not only for
homogeneous ones.

We give some more evidence for this conjecture by proving the analogue of
Igusa’s conjecture (with the motivic oscillation index instead of the above σ, as
in [2]), for all quasi-homogeneous polynomials (also degenerate ones) for m = 1,
thereby generalizing [2] and some results by Katz of [5] to the quasi-homogeneous
case.

This work generalizes most of the known evidence for Igusa’s conjecture to evi-
dence for its generalization to quasi-homogeneous polynomials. (To our knowledge,
the case of isolated singularities of [4] is only done for homogeneous polynomials
and remains open for quasi-homogeneous ones.)

1.2. Local sums. Since for more general f than quasihomogeneous f , Igusa’s con-
jecture is not even conjecturally understood, Denef and Sperber designed a local
variant of Igusa’s conjecture which they conjecture to hold for all polynomials; see
[3]. We treat only the nondegenerate case. Let g be a polynomial in n variables
which is nondegenerate w.r.t. its Newton polyhedron at zero Δ0(g). Denef and
Sperber studied the “local” exponential sum

Tg(
1

pm
) :=

1

pmn

∑
x∈{jp|j=1,...,pm−1}

exp(2πi
g(x)

pm
),

for p a prime and m > 0 an integer, and conjectured that there exists c such that

|Tg(
1

pm
)| < cp−σ(g)mmκ(g)−1

for large enough prime numbers p and all integers m > 0, with σ(g) and κ(g) as
σ and κ but for g instead of for f . Denef and Sperber [3] proved this under the
condition that no vertex of Δ0(g) belongs to {0, 1}n. In this paper we prove this
conjecture of [3] for all polynomials g which are nondegenerate w.r.t. Δ0(g) (thereby
removing the condition of [3] that no vertex of Δ0(g) belongs to {0, 1}n).

1.3. Global sums: Igusa’s question mod p. Theorem 3.2.1 below is the modulo
p case for quasi-homogeneous polynomials of Igusa’s conjecture for exponential
sums in [4]. In this theorem, the polynomial h is not necessarily nondegenerate. It
generalizes the main result of [2] from the homogeneous to the quasi-homogeneous
case. The modulo p2 case is already proven in [2] for all polynomials. In order to
prove Theorem 3.2.1 we generalize some results by Katz [5]; see Theorem 7.4 below.

2. A dictionary

2.1. From finite sums to p-adic integrals. For Qp the field of p-adic numbers,
x = (x1, . . . , xn) variables running over Qn

p , let |dx| be the unique (real-valued)
Haar measure on Qn

p so normalized that Zn
p has measure one. For a ∈ Qp, the

complex number
exp(2πia mod Zp) := exp(2πia′)
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does not depend on the choice of representant a′ in Z[1/p] of a mod Zp, and will be
denoted by exp(2πia).

Then, for f a polynomial in n variables over Q, one has the equality

Sf (
1

pm
) =

∫
Zn
p

exp(2πi
f(x)

pm
)|dx|,

and we will more generally consider for all y ∈ Qp the integral

Sf,Qp
(y) :=

∫
Zn
p

exp(2πiyf(x))|dx|.

2.2. From Qp to finite field extensions of Qp and to Fq((t)). If f is a polyno-
mial over O[1/N ] for some ring of integers O and N > 0 an integer, when K is a
non-Archimedean local field which is an algebra over O[1/N ] (thus p-adic or of the
form Fq((t))), and ψK : K → C× is a nontrivial additive character which is 1 on
OK and different from 1 on some element of order −1, then we write for y ∈ K,

Sf,K,ψK
(y) :=

∫
On

K

ψK(yf(x))|dx|,

with OK the valuation ring of K and |dx| the Haar measure, normalized so that
On

K has measure one.
Similarly, if g is a polynomial over O[1/N ] and with K and ψK as above in this

section, we write

Tg,K,ψK
(y) :=

∫
Mn

K

ψK(yg(x))|dx|

with MK the maximal ideal of OK and Mn
K the n-fold Cartesian product of MK

with itself.
For K = Qp one has

Tg(
1

pm
) = Tg,Qp,exp(2πi·)(

1

pm
)

and

Sf (
1

pm
) = Sf,Qp,exp(2πi·)(

1

pm
).

Write | · |K for the standard norm on K. So, the norm of a uniformizer of OK

equals 1
qK

with qK the number of elements in the residue field of OK . Let | · | denote
the norm on C.

2.3. Nondegenerate polynomials. Let f be a nonconstant polynomial over C

in n variables with f(0) = 0.1 Write f(x) =
∑

i∈Nn aix
i with ai ∈ C. The global

Newton polyhedron Δglobal(f) of f is the convex hull of the support Supp(f) of f ,
with

Supp(f) := {i | i ∈ Nn, ai �= 0}.
The Newton polyhedron Δ0(f) of f at the origin is

Δ0(f) := Δglobal(f) + Rn
+

1When f(0) �= 0, then there is no harm in replacing f by f − f(0): all corresponding changes
in the paper are easily made.
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with R+ = {x ∈ R | x ≥ 0} and A + B = {a + b | a ∈ A, b ∈ B} for A,B ⊂ Rn.
For a subset I of Rn define

fI(x) :=
∑

i∈I∩Nn

aix
i.

By the faces of I we mean I itself and each nonempty convex set of the form

{x ∈ I | L(x) = 0},

where L(x) = b0 +
∑n

i=1 bixi with bi ∈ R is such that L(x) ≥ 0 for each x ∈ I. For
I a collection of subsets of Rn, call f nondegenerate with respect to I when fI has
no critical points2 on (C×)n for each I in I, where C× = C \ {0}. As is common
terminology, call f nondegenerate w.r.t. Δ0(f) when f is nondegenerate w.r.t. the
compact faces of Δ0(f).

For k ∈ Rn
+ put

ν(k) = k1 + k2 + · · ·+ kn,

N(f)(k) = min
i∈Δ0(f)

k · i,

F (f)(k) = {i ∈ Δ0(f) | k · i = N(f)(k)},

where k · i is the standard inproduct on Rn, and where i also runs over Rn
+. Denote

by F0(f) the smallest face of Δ0(f) which has nonempty intersection with the
diagonal {(t, . . . , t) | t ∈ R} and let (1/σ(f), . . . , 1/σ(f)) be the intersection point
of the diagonal with F0(f). Let κ(f) be the codimension of F0(f) in Rn. If there is
no possible confusion, we write σ instead of σ(f), N(k) instead of N(f)(k), F (k)
for F (f)(k), and κ for κ(f).

2.4. Notation. Often in this paper, f is a quasi-homogeneous polynomial and g
a polynomial, both over O[1/N ] and in n variables, with O a ring of integers and
N > 0 an integer, such that f and g are nonzero, f(0) = g(0) = 0 and such that f
is nondegenerate w.r.t. Δ0(f) and g is nondegenerate w.r.t. Δ0(g). If f and g are
such we will say that they are as in section 2.4.

By K is usually meant a non-Archimedean local field that is an algebra over
O[1/N ] and by qK the number of elements in the residue field of OK . If f and g,
K and qK are such, we will say that they are as in section 2.4.

3. The main results

Let f , g, and K be as in section 2.4 and use the notation of sections 2.2 and 2.3.

3.1. Theorem. There exists c, only depending on Δ0(f), resp. on Δ0(g), such that
for all K with large enough residual characteristic, all ψK as in section 2.2, and
all y in K with ordK(y) < 0,

(3.1.1) |Sf,K,ψK
(y)| < c|y|−σ(f)

K |ordK(y)|κ(f)−1,

resp.

(3.1.2) |Tg,K,ψK
(y)| < c|y|−σ(g)

K |ordK(y)|κ(g)−1.

2Sometimes one requires that fI has no singular points on (C×)n, instead of no critical points
on (C×)n. Recall that x0 is a critical point of fI if and only if grad fI(x0) is the zero vector.
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In the case that f is moreover homogeneous, a slightly weaker form than (3.1.1)
has been conjectured by Igusa [4] and (3.1.1), (3.1.2) have been conjectured by
Denef and Sperber [3]. The similar conjecture by Igusa mentioned in the beginning
of the introduction (namely for all primes p) then follows by standard arguments;
cf. [2]. Denef and Sperber prove (3.1.2) when no vertex of Δ0(g) belongs to {0, 1}n.
As briefly mentioned in the introduction, (3.1.1) for homogeneous f is proven in
[3] under the condition that no vertex of Δ0(f) belongs to {0, 1}n and in [1] in full
generality. Recall that in Theorem 3.1, f is allowed to be quasi-homogeneous and
g is general.

3.2. Let h be any quasi-homogeneous polynomial over O[1/N ] (so, h is not neces-
sarily nondegenerate). Let αh be the motivic oscillation index of h as defined in [2]
according to a suggestion by Jan Denef. As in [2], we conjecture that there exists
c such that for all K with large enough residual characteristic (where K runs over
non-Archimedean local fields that are algebras over O[1/N ]), all ψK as in section
2.2, and all y in K with ordK(y) < 0,

(3.2.1) |Sh,K,ψK
(y)| < c|y|αh

K |ordK(y)|n−1.

Generalizing the main theorem of [2] to the quasi-homogeneous case, we prove the
following evidence for this conjecture.

3.2.1. Theorem. Statement (3.2.1) holds for all y ∈ K of orders −1 and −2. That
is, there exists c such that for all K of large enough residual characteristic with K
an algebra over O[1/N ], all ψK as in section 2.2, and all y ∈ K of order −1 or
order −2, statement (3.2.1) holds.

Note that (3.1.1) of Theorem 3.1 also constitutes evidence for this conjecture.

3.3. A third main result is Theorem 7.4 on finite field exponential sums and gen-
eralizes some results by Katz [5] to the quasi-homogeneous case (not necessarily
nondegenerate). Proposition 6.2 represents a new kind (a similar bound in the
homogeneous case was introduced in [1]) of very simple bounds for nondegener-
ate finite field exponential sums for quasi-homogeneous polynomials, based on the
combinatorics of the Newton Polyhedron.

3.4. The underlying idea of the proofs of these questions, apart from the ideas and
results of [3], [5], [1], and [2], is that one can make a homogeneous polynomial out
of a quasi-homogeneous polynomial f(x) in finitely many steps, by replacing one
of the variables xi by yxi with y a new variable, that is, by replacing f(x) by

f1(x, y) := f(x1, x2, . . . , xi−1, xiy, xi+1, . . . , xn)

and so on, and then one compares the considered objects for f and for f1.

4. A Denef - Sperber Formula for Sf,K,ψK
and Tg,K,ψK

The following proposition has essentially the same proof as Proposition (2.1) of
[3], but is slightly more general. We give the proof for the convenience of the reader.

4.1. Proposition. Let f , g, K, and qK be as in section 2.4. There exists M > 0
such that if the residual characteristic of K is greater than M , then for all y in K
with ordK(y) < 0,

(4.1.1) Sf,K,ψK
(y) = dK ·

∑
τ face of Δ0(f)

(
Af (K, y, τ )+E(K, y, fτ , ψK)Bf (K, y, τ )

)
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and

(4.1.2) Tg,K,ψK
(y) = dK ·

∑
τ compact

face of Δ0(g)

(
Ag(K, y, τ ) + E(K, y, gτ , ψK)Bg(K, y, τ )

)
,

with

dK := (1− q−1
K )n,

Af (K, y, τ ) :=
∑

k ∈ Nn

F (f)(k) = τ
N(f)(k) ≥ −ord(y)

q
−ν(k)
K ,

Bf (K, y, τ ) :=
∑

k ∈ Nn

F (f)(k) = τ
N(f)(k) = −ord(y)− 1

q
−ν(k)
K ,

and similarly for Ag(K, y, τ ) and Bg(K, y, τ ), and, for h(x) either fτ or gτ ,

(4.1.3) E(K, y, h, ψK) =
1

(qK − 1)n

∑
x ∈ (Gm(FqK ))n

ϕy(h(x)),

with ϕy : FqK → C× a nontrivial additive character on FqK sending b to

ψK(yπ−ordy−1
K b′), with b′ a representant in OK of b and πK a uniformizer of OK .

Proof. Rewrite the definition

Sf,K,ψK
(y) =

∫
On

K

ψK(yf(x))|dx|

as

Sf,K,ψK
(y) =

∑
τ face of Δ0(f)

∑
k ∈ Nn

F (f)(k) = τ

∫
ordK x=k

ψK(yf(x))|dx|.

Put xj = π
kj

K uj for k ∈ Nn, with πK a uniformizer of OK . Then |dx| = q
−ν(k)
K |du|

and

f(x) = π
N(f)(k)
K

(
fF (f)(k)(u) + πK(...)

)
,

for x with ordx = k, where the dots take values in OK . Hence, Sf,K,ψK
(y) equals

(4.1.4)∑
τ face of Δ0(f)

∑
k ∈ Nn

F (f)(k) = τ

q
−ν(k)
K

∫
u∈(O×

K)n
ψK

(
yπ

N(f)(k)
K (fτ (u) + πK(...))

)
|du|,

with O×
K the group of units in OK . Because of the nondegenerateness assumptions,

for τ any face of Δ0(f) and when the residue field characteristic of K is large
enough, the reduction fτ mod MK has no critical points on (F×

qK )n (this holds
indeed for all faces and not only for the compact faces by the quasi-homogeneity of
f). Hence, the integral in (4.1.4) is zero whenever ordK(y)+N(f)(k) ≤ −2. When
ordK(y) + N(f)(k) ≥ 0, the integral over (O×

K)n in (4.1.4) is just the measure of

(O×
K)n and thus equals (1 − q−1

K )n. When ordK(y) + N(f)(k) = −1, the integral
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over (O×
K)n in (4.1.4) equals q−n

K (qK − 1)nE(K, y, h, ψK). Equation (4.1.1) now
follows from the fact that Sf,K,ψK

(y) equals (4.1.4).
Equation (4.1.2) follows in a similar way. Namely, one writes

Tg,K,ψK
(y) =

∑
τ face of Δ0(g)

∑
k ∈ (N \ {0})n
F (g)(k) = τ

∫
ordK x=k

ψK(yg(x))|dx|,

which equals

Tg,K,ψK
(y) =

∑
τ compact face of Δ0(g)

∑
k ∈ Nn

F (g)(k) = τ

∫
ordK x=k

ψK(yg(x))|dx|,

and one proceeds as for f . �

5. Bounds for ν(k), Af , Bf , Ag, and Bg

We recall two results from [1], about lower bounds for ν(k) in terms of N(f)(k)
and N(g)(k), and upper bounds for Af , Bf , Ag, and Bg.

5.1. Proposition ([1], Theorem 4.1). Let h be any nonzero polynomial in n vari-
ables with h(0) = 0. Let τ be a face of Δ0(h). Then one has for all k in Nn with
F (h)(k) = τ that

(5.1.1) ν(k) ≥ σ(h)
(
N(h)(k) + 1

)
− σ(hτ ).

The main point in Proposition 5.1, and one of the main differences with the
approach from [3], is that one subtracts σ(hτ ) on the right hand side of (5.1.1).
Subtracting σ(h) would yield trivial bounds since one has ν(k) ≥ σ(h)N(h)(k) for
all k ∈ Nn

+.
The bounds for Af and Ag in Proposition 5.2 are essentially proven in [3] and

follow from Lemma (3.3) of [3], which is recalled in Lemma 5.3 below (in [1] the proof
of these bounds is repeated from [3]). The bounds for Bf and Bg are essentially
proven in [1] and follow from Lemma (3.3) of [3] and Proposition 5.1.

5.2. Proposition ([1], [3]). Let f , g, A, and B be as in Proposition 4.1. Then
there exists a real number c > 0 such that for all K as in section 2.4, all faces τ of
Δ0(f), resp. of Δ0(g), and all y in K with ordK(y) < 0,

(5.2.1) Af (K, y, τ ) ≤ c|y|−σ(f)
K |ordK(y)|κ(f)−1

and

(5.2.2) Bf (K, y, τ ) ≤ c|y|−σ(f)
K q

σ(fτ )
K |ordK(y)|κ(f)−1,

resp.,

(5.2.3) Ag(K, y, τ ) ≤ c|y|−σ(g)
K |ordK(y)|κ(g)−1

and

(5.2.4) Bg(K, y, τ ) ≤ c|y|−σ(g)
K q

σ(gτ )
K |ordK(y)|κ(g)−1.

Moreover, one can choose c depending on Δ0(f) and Δ0(g) only.
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Proof. We give the proof for Bg for the convenience of the reader. The proof for Bf

is similar, and the proofs for Af and Ag can be found in [3]. To derive (5.2.4) from
Lemma 5.3 and Proposition 5.1, use for C the topological closure of the convex hull
of {0} ∪ {k ∈ Nn | F (g)(k) = τ}, and note that C int ∩ Nn = {k ∈ Nn | F (g)(k) =
τ}. Clearly κ(g) ≥ 1 and κ(g) ≥ dim{k ∈ C | ν(k) = N(g)(k)σ}. By (5.1.1),
ν(k) ≥ N(g)(k)σ(g) + σ(g) − σ(gτ ) for all k ∈ C int ∩ Nn. So for γ one can take
σ(g)− σ(gτ ), which is nonnegative. �
5.3. Lemma ([3], Lemma (3.3)). Let C be a convex polyhedral cone in Rn

+ generated
by vectors in Nn, and let L be a linear form in n variables with coefficients in N.
We denote by C int the interior of C in the sense of Newton polyhedra. Let σ > 0
and γ ≥ 0 be real numbers satisfying

(5.3.1) ν(k) ≥ L(k)σ + γ, for all k ∈ C int ∩ Nn.

Put
e = dim{k ∈ C | ν(k) = L(k)σ}.

Then there exists a real number c > 0 such that for all m ∈ N and for all q ∈ R

with q ≥ 2,

(5.3.2)
∑

k ∈ C int ∩ Nn

L(k) = m

q−ν(k) ≤ cq−mσ−γ(m+ 1)max(0,e−1).

6. Estimates for finite field exponential sums

For each prime number p, let ψp be a nontrivial additive character from Fp to
C×, and likewise, for each power q of p, let ψq be a nontrivial additive character
from Fq to C×.

6.1. Lemma. Let f be a polynomial over some number field in the n variables
x1, . . . , xn. (Thus f is not necessarily quasi-homogeneous.) Let g(x1, . . . , xn, y)
be the polynomial f(x1y, x2, . . . , xn) in the n + 1 variables (x, y). Suppose that
f(0) = g(0) = 0. Then σ(f) = σ(g). Moreover, if f is nondegenerate w.r.t. Δ0(f),
then g is nondegenerate w.r.t. Δ0(g).

Proof. Clearly, for any point P = (p1, . . . , pn) on Δ0(f), the point P
′ = (p1, . . . , pn,

p1) lies on Δ0(g). Indeed, this holds for points P in the support of f , thus also for P
in the convex hull of the support of f , and thus for general P in Δ0(f). Vice versa,
for any point Q = (q1, . . . , qn+1) on Δ0(g), the point Q

′ = (q1, . . . , qn) lies in Δ0(f).
From this it follows that σ(f) = σ(g). The statement about the nondegenerateness
is immediate since we performed a coordinate transformation on the torus Gn+1

m

induced by a Z-module automorphism of Zn+1. �
The following generalizes Corollary 6.4 of [1] from the homogeneous case to the

quasi-homogeneous case. Corollary 6.4 of [1] is proven in [1] using results by Katz
[5], by Segers [6], and by the author [2].

6.2. Proposition. Let f be as in section 2.4. (In particular, f is quasi-homoge-
neous.) Then there exists a > 0 such that for each large enough prime p, and each
power q of p such that Fq is an algebra over O[1/N ], one has

(6.2.1) | 1

(q − 1)n

∑
x∈Gn

m(Fq)

ψq(f(x))| < aq−σ(f)
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and

(6.2.2) | 1
qn

∑
x∈An(Fq)

ψq(f(x))| < aq−σ(f),

for all choices of ψq. Moreover, a can be chosen depending on Δ0(f) only.

Proof. We first prove (6.2.1). First suppose that f is homogeneous. If moreover
f(x) is of the form

∑n
i=1 aixi, (6.2.1) follows from the obvious inequality σ(f) ≤ n.

If f is nonlinear (that is, f(x) is not of the form
∑n

i=1 aixi) and homogeneous, then
the proposition holds by Corollary 6.4 of [1]; see also section 9 of [1]. So, the case
of homogeneous f is done. Now let f be quasi-homogeneous. After finitely many
steps as in going from f to g in Lemma 6.1 and renumbering the variables xi, one
can go from a quasi-homogeneous polynomial to a homogeneous polynomial h in
possibly more variables. Going from f to g as in Lemma 6.1 consists of two steps:
first, one defines a polynomial f0(x, y) which equals f(x), that is, one considers f
as a polynomial in one more variable y. Then one performs the transformation on
the torus, (x, y) to (x1y, x2, . . . , xn, y), to obtain g. Under both these steps, the
sum (6.2.1) remains unaltered, since one divides by (q − 1)n with n the number
of variables in the left hand side of (6.2.1), and since in the second step we just
perform a transformation on the torus. Lemma 6.1 together with the homogeneous
case now proves (6.2.1).

The inequality (6.2.2) is not used in this paper and follows from (3.1.1) of The-
orem 3.1 with argument y of order −1. �

7. A corollary of results by Katz

The results in this section will only serve to prove Theorem 3.2.1, not to prove
Theorem 3.1. In this section as well as in Theorem 3.2.1 we focus on quasi-
homogeneous polynomials in general (thus not necessarily nondegenerate ones).

Call a collection of polynomials fi in n variables quasi-homogeneous with the
same weights if there are integers aj > 0, not depending on i, such that fi(x

a1
1 , . . . ,

xan
n ) is homogeneous for each i.

7.1. Lemma. Let fi be quasi-homogeneous polynomials with the same weights, for
i = 1, . . . , d. Suppose that fd is nonconstant. Let X be the locus of the fi for
i = 1, . . . , d− 1 in An and let Y be the locus of the fi for i = 1, . . . , d in An. Then

dimX ≤ dimY + 1,

where the dimension of the empty scheme is −1.

Proof. Clearly this statement holds when the fi are homogeneous polynomials, by
intersection theory. Since the fi have the same weights, let aj , j = 1, . . . , n be
positive integers such that each of the fi(x

a1
1 , . . . , xan

n ) is homogeneous. Consider
the application

G : An → An : x 
→ (xa1
1 , . . . , xan

n ).

The application G is finite to one; hence G−1(X) has the same dimension as X, and
G−1(Y ) has the same dimension as Y . By the above statement for homogeneous
polynomials, the dimension of G−1(X) is less than or equal to the dimension of
G−1(Y ) plus 1. The lemma is proven. �
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7.2. Corollary. Let f be a quasi-homogeneous polynomial over a field of charac-
teristic zero in the n variables x1, . . . , xn. Let g(x1, . . . , xn, y) be the polynomial
f(x1y, x2, . . . , xn) in n + 1 variables. Let Cf be the closed subscheme of An given
by grad f = 0, and let Cg be the closed subscheme of An+1 given by grad g = 0.
Suppose that Cf contains the point 0. Then

dimCg ≤ dimCf + 1,

where the dimension of the empty scheme is said to be −1.

Proof. For i = 1, . . . , n let fi(x) be the polynomial ∂f
∂xi

(x), let gi(x, y) be the poly-

nomial ∂g
∂xi

(x, y), and let g0(x, y) be ∂g
∂y (x, y). Note that the polynomials fi are

quasi-homogeneous with the same weights. Similarly, the polynomials gi are quasi-
homogeneous with the same weights.

By the chain rule for differentiation one has

g0(x, y) = x1f1(x1y, x2, . . . , xn),

g1(x, y) = yf1(x1y, x2, . . . , xn),

and, for i > 1,
gi(x, y) = fi(x1y, x2, . . . , xn).

On the part U1 of An+1 where x1y �= 0 the bound is clear. Indeed, U1∩Cg is the
subscheme of An+1 given by x1y �= 0 and fi(x1y, x2, . . . , xn) = 0 for i = 1, . . . , n,
which has dimension at most dimCf + 1.

Now work on the part U2 where x1 = 0 and y �= 0. Then U2∩Cg is the subscheme
of An+1 given by fi(x) = 0 for i = 1, . . . , n, y �= 0, and x1 = 0, which has dimension
at most dimCf + 1.

Finally work on the part U3, where x1 = 0 and y = 0. Then U3 ∩ Cg is the
subscheme of An+1 given by x1 = y = 0 and 0 = fi(x) for i = 2, . . . , n. We know
that f1 is nonconstant since Cf contains 0. So, the subscheme of An given by
0 = fi(x) for i = 2, . . . , n has at most dimension dimCf +1 by Lemma 7.1. Hence,
the dimension of Cg ∩ U3 has at most dimension dimCf + 1 and the corollary is
proven. �

The following is a trivial lemma.

7.3. Lemma. Let f be a nonconstant, quasi-homogeneous polynomial in n variables
x1, . . . , xn over a field k of characteristic zero. Then exactly one of the following
two statements holds: either 0 is a critical point of f , or f contains a term of the
form aixi with ai �= 0 in k for some i ∈ {1, . . . , n}.

From Lemma 7.1 and Corollary 7.2, Katz’ results of [5] can be generalized to
quasi-homogeneous polynomials; see Theorem 7.4. Namely, Theorem 7.4 gener-
alizes Katz’ results [5] and some of their corollaries in [1] from homogeneous to
quasi-homogeneous polynomials, on Gn

m and on An.

7.4. Theorem. Let f be a quasi-homogeneous polynomial in n variables over
O[1/N ] for some ring of integers O and integer N > 0. Suppose that 0 is a critical
point of f . Let d be the dimension of the locus of grad f = 0, with the dimension
of the empty scheme equal to −1. Then there exists a > 0 such that for each large
enough prime p, each power q of p such that Fq is an algebra over O[1/N ], one has

(7.4.1) | 1

(q − 1)n

∑
x∈Gn

m(Fq)

ψq(f(x))| < aq
−n+d

2
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and

(7.4.2) | 1
qn

∑
x∈An(Fq)

ψq(f(x))| < aq
−n+d

2 ,

for all choices of ψq.

Proof. We first prove (7.4.1). By [1], Corollary 6.1 and section 9, (7.4.1) holds for
nonlinear homogeneous f . Now let f be quasi-homogeneous and suppose that 0 is
a critical point. After finitely many steps as from going from f to g in the proof
of Corollary 7.2 and after renumbering the coordinates, one can go from a quasi-
homogeneous polynomial to a nonlinear homogeneous polynomial h in possibly more
variables. Going from f to g consists of two steps: first, one defines a polynomial
f0(x, y) which equals f(x); that is, one considers one more variable y. Then one
performs the transformation on the torus (x, y) to (x1y, x2, . . . , xn, y) to obtain
g. Under both these steps, the sum which is the left hand side of (7.4.1) remains
unaltered, since one divides by (q − 1)n with n the number of variables in the left
hand side of (7.4.1), and since one just performs a transformation on the torus.
Corollary 7.2 now proves (7.4.1).

Now let us prove (7.4.2). Let f0(x̂) be the polynomial f(0, x̂) in the n−1 variables
x̂ = (x2, . . . , xn). Clearly f0 is quasi-homogeneous in n− 1 variables. Write Cf for
the locus of grad f = 0 in An and Cf0 for the locus of grad f0 = 0 in An−1. By
(7.4.1) it is enough to show that n − 1 + dimCf0 ≤ n + d. Thus we only have to
show that

(7.4.3) dimCf0 ≤ dimCf + 1,

where we recall that dimCf = d. This inequality (7.4.3) follows from writing

f(x) = x1f̃(x) + f0(x̂)

with f̃ a polynomial in x, and from Lemma 7.1, as follows. By Lemma 7.3, f̃ is
nonconstant. For i = 1, . . . , n, let fi(x) be the polynomial ∂f

∂xi
(x) and for j =

2, . . . , n, let f0j(x̂) be the polynomial ∂f0
∂xj

(x̂). Let Y be the locus in An of the

polynomials f0j and the equation x1 = 0. Let Z be the intersection of Cf with
x1 = 0. Then clearly

(7.4.4) dimY = dimCf0 .

Since f1 = f̃+x1∂f̃/∂x1, it follows that Z equals the intersection of Y with f̃(x) =

0. The polynomials fi and f̃ are quasi-homogeneous with the same weights. By
Lemma 7.1 and since f̃ is nonconstant, dimY ≤ dimZ+1. Clearly also dimZ ≤ d.
Now (7.4.3) follows by (7.4.4), and thus the proposition is proved. �

8. Proofs of the main theorems

Proof of Theorem 3.1. By (6.2.1) of Proposition 6.2, one finds immediately that
there is a c such that for all K and qK as in section 2.4 of large enough residue
characteristic, and all faces τ of Δ0(f), resp. all compact faces τ of Δ0(g),

(8.0.5) |E(K, y, fτ , ψK)| < cq
−σ(fτ )
K ,

resp.

(8.0.6) |E(K, y, gτ , ψK)| < cq
−σ(gτ )
K ,
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since automatically each fτ , resp. each gτ , is quasi-homogeneous for such τ . More-
over, c only depends on Δ0(f), resp. on Δ0(g), by Proposition 6.2. Now use Propo-
sition 4.1, Proposition 5.2, and (8.0.5), (8.0.6). �

The above proof of Theorem 3.1 is similar to the one of the main theorem of
[1]. The key new ingredient in its proof is Proposition 6.2 for quasi-homogeneous
polynomials instead of for homogeneous polynomials. Note that Proposition 6.2
was used both for (3.1.1) and for (3.1.2).

Proof of Theorem 3.2.1. By Lemma 7.3 we may suppose that 0 is a critical point of
f . Otherwise, that is, when 0 is not a critical point, one has Sh,K,ψK

(y) = 0 for the
K and y under consideration. The theorem then follows from (7.4.2) of Theorem
7.4 and from the fact that the motivic oscillation index αh of h satisfies

−n+ d

2
≤ αh,

with d the dimension of the locus of gradh = 0, by Theorem 5.1 of [2]. �
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