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⋆ Please email me at Raf.Cluckers@univ-lille.fr if you �nd errors in my papers
not yet documented below.

- Addendum to [1].

• In the proof of Proposition 5.2 of [1], the correct reference is to Theorem 5.6
of [18] (instead of Theorem 5.5 of [18]).

- Corrigenda to [2].

• In Proposition 2.6, the polynomials Fi are in n + 2 variables (instead of in
n+ 1 variables).

• In Proposition 4.3.3, the condition �irreducible� on h(f) should be replaced
by the condition �absolutely irreducible�. Indeed, this is used in the proof
when saying that there are at most d(d − 1) lines L in the direction of
v (for the directional derivative not to vanish identically). At every use
of this Proposition 4.3.3 in the paper, this extra condition of absolutely
irreducibility for h(f) is already satis�ed. The same correction should be
made to Proposition 7.1 of [Marcelo Paredes, Román Sasyk, Uniform bounds

for the number of rational points on varieties over global �elds, ANT, 2022].
• In Proposition 4.3.4, the upper bound cd14B for Naff(f,B) should be cd18B.
Indeed, in the proof of Proposition 4.3.4, δ can be at most d times the
expression from (4.3.1) (this factor d is forgotten in the reasoning). The
exponent 18 has been picked up correctly in Proposition 7.3 of [Marcelo
Paredes, Román Sasyk, Uniform bounds for the number of rational points on

varieties over global �elds, ANT, 2022]. This correction is now obsolete in
view of the improvements made in [6].

• In Lemma 4.3.7, the degree should be (n+1)d(d2−1) instead of (n+1)(d2−1).
The corresponding correction should be made in Lemma 7.5 of [Marcelo
Paredes, Román Sasyk, Uniform bounds for the number of rational points on

varieties over global �elds, ANT, 2022].
• Remark 4.3.8 should be changed according to the corrected versions of Propo-
sition 4.3.4 and Lemma 4.3.7. This correction is now obsolete in view of the
improvements made in [6].

- Addendum to [3] and [8].
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• In Remark 2.1.16 of [5], an additional reduction argument is explained that
was used but not made explict in [3] and [8].

- Corrigendum to [4].

• In [4], there are two alternative de�nitions given for cones with multiplicities
and it is claimed that they are equivalent, namely the equality of CMΛ

0 (X)
and SCΛ

0 (X) in Section 5.4 of [4]. In fact, they are not equal in general, and,
only CMΛ

0 (X) should be used throughout [4] (and not SCΛ
0 (X)), as noted

in Section 6.1 of [19]. Even with this corrected de�nition, the �nal part of
Theorem 3.6.2 of [4] remains unproved as far as we know, and Proposition
2.4.2 of [4] is wrong as stated, as noted in Section 6.1 of [19]. We thank
Arthur Forey for pointing this out to us.

- Corrigenda to [7].

• In Lemma 5.1.3, Proposition 5.1.4 and Theorems B and 5.2.2 of [7], for L of
characteristic zero, the dependence of the bounds on the degree ν of L over
Qp is forgotten. For Lemma 5.1.3 this is explained in [11]. Put ν = 1 if L
is a of positive characteristic, and otherwise let ν be the degree of L over
Qp. In Theorem 5.2.2 of [7], the constant C, the integer ℓ and the family
W should be allowed to depend additionally on ν. In Theorem B of [7], the
constant C and the set W ε should be allowed to depend additionally on ν.
In Proposition 5.1.4, the constants C and C ′ should be allowed to depend
additionally on ν.

• On line 8 in Section 1.2 of [7] there is a typo: t should be send to ϖL instead
of to φL.

• The obviously intended inclusion Wy,s ⊂ Xy should be added explicitly in
Theorem 5.2.2 of [7] and the same for the inclusion Vy,σ ⊂ Zy in Theorem
4.2.3 of [5].

- Corrigendum to [9].

• In Proposition 4.1 of [9] one should add the extra condition on the coe�cients
ca,b,i,j that they are non-torsion whenever a ̸= 0. This is explained in [15].

- Corrigenda to [10].

• A smoothness condition is missing in Proposition 4.3.1 of [10]; this smooth-
ness condition is made explicit and explained in Remark 6.6 of [1].

• In De�nition 2.1.1 of [10], the norm is missing in the numerator of the dif-
ference quotient.

- Addenda to [12].

• In [13, Remark A.1.8], a correction to Theorem 4.5.15 of [12] is made.
Namely, it is noted that the order symbol < should be part of the language
LA in De�nition 4.5.14 to make the statement of Theorem 4.5.15 correct.

• In [13, Remark A.1.9], it is explained that one of the two proofs given for the
quanti�er elimination statement of Theorem 6.3.7 of [12] is incomplete, and
this proof is completed in Remark A.1.9. One proof uses compactness, and,
the other proof is more classical and follows the line of quanti�er elimination
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results going back to [17] and [21]. We thank Silvain Rideau for pointing
this out to us.

• In De�nition 4.1.2(ii) of [12], it should be added that Am,n is closed under
permutation of the ξ-variables and also under permutation of the ρ-variables.
Similarly, in De�nition 4.3.1(ii) of [12], it should be added that Am is closed
under permutation of the ξ-variables. In De�nition 3.1.1 of [12] it is optional
to add it or not (the results of the paper are correct without adding the
stability under permutation of the variables). Note that in [13, De�nition
3.1.2(ii)], the stability under permutation is already explicitely mentioned,
and hence, no correction is needed.

- Addendum to [14].

• In the whole paper [14] the base �eld k is assumed to be of characteristic
zero. This should have been made more explicit, but is implicitly clear from
the context and used results.

- Addendum to [16].

• In De�nition 3.3 of [16], the power series F has to converge on an open
neighborhood of the closure of the image of φ. This word `closure' should
be added, in line with previous preparation results as in [20] [23] [22].
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