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The aim of this chapter is to set up the theory of p-adic integration to an extent
which is sufficient for proving Igusa’s theorem [Ig] on the rationality of the p-adic zeta
function, and Weil’s interpretation [We1] of the number of points of a variety over a finite
field as a p-adic volume, in case this variety is defined over the ring of integers of a p-
adic field. After recalling a few facts on p-adic fields, I will introduce p-adic integrals,
both in the local setting and with respect to a global top differential form on a K-
analytic manifold. I will explain Igusa’s proof of the rationality of the zeta function using
Hironaka’s resolution of singularities in the K-analytic case, and the change of variables
formula. Weil’s theorem on counting points over finite fields via p-adic integration will
essentially come as a byproduct; it will be used later in the course to compare the number
of rational points of K-equivalent varieties.

1. Basics on p-adic fields

We will first look at different approaches to constructing the p-adic integers Zp and
the p-adic numbers Qp, as well as more general rings of integers in p-adic fields, and
recall some of their basic properties. I highly recommend [Ne] Chapter II for a detailed
discussion of this topic.

p-adic numbers. Let p be a prime, and x ∈ Q. One can write uniquely x = pm · a
b

with
m ∈ Z and a and b integers not divisible by p. We define the order and the norm of x
with respect to p as

ordp(x) := m and |x|p :=
1

pm
.

This norm on Q is an example of the following general concept:
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Definition 1.1. Let K be a field. A non-archimedean absolute value on K is a map
| · | : K → R≥0 satisfying, for all x, y ∈ K, the following properties:

(i) |x| ≥ 0 for all x, and |x| = 0 if and only if x = 0.

(ii) |xy| = |x| · |y|.

(iii) |x+ y| ≤ max {|x|, |y|}.

If we consider the mapping d(x, y) := |x − y|, then this is a (non-archimedean)
distance function (or metric), which in turn induces a topology on K.

Definition 1.2. The field of p-adic numbers Qp is the completion of the topological space
Q in the norm | · |p, i.e. the set of equivalence classes of all Cauchy sequences with respect
to this norm. 1 Note that Qp is a field of characteristic 0.

It is standard to see that every x ∈ Qp has a unique “Laurent series (base p)
expansion”, namely a representation of the form

(1) x = amp
m + am+1p

m+1 + . . .

where m = ordp(x) ∈ Z and ai ∈ {0, 1, . . . , p− 1} for all i.

Exercise 1.3. Check that in Qp one has:

(i) 1
1−p

= 1 + p+ p2 + . . .

(ii) −1 = (p− 1) + (p− 1)p+ (p− 1)p2 + . . .

Exercise 1.4. Show that Qp is a totally disconnected, locally compact topological space.

Definition 1.5. The ring of p-adic integers Zp is the unit disk in the space Qp with the
norm | · |p, namely

Zp = {x ∈ Qp | |x|p ≤ 1}.
This is precisely the set of x with no Laurent part in the expression in (1), i.e. such that
ai = 0 for i < 0, easily checked to be a ring via the properties of the norm.

The following exercise collects some of the most important properties of Zp.

Exercise 1.6. (i) Zp is open and closed in Qp.

(ii) Zp is compact.

(iii) Zp is a local ring, with maximal ideal pZp = {x ∈ Zp | |x|p < 1}, and

Zp/pZp ' Z/pZ.

Completions of DVR’s. More generally, one can approach and extend the constructions
above is via completions in the m-adic topology. Consider a DVR (R,m), with field of
fractions K = Q(R) and associated discrete valuation v : K → Z. On R, or K, one can
consider the m-adic topology, which is the unique translation invariant topology with a

1Thus in Qp every Cauchy sequence is convergent, and Q can be identified with its subfield consisting
of classes of constant sequences.
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basis of neighborhoods of 0 consisting of {mi}i≥1. (See for instance [Ma] §8 for the general
setting, and for a detailed treatment of the properties discussed below.)

Definition 1.7. The completion of R with respect to the m-adic topology is

R̂ := lim
←−

i

R/mi.

This is a Noetherian local ring with a canonical embedding R ↪→ R̂. Its maximal

ideal is m · R̂, and we have

R̂/(m · R̂)i ' R/mi for all i ≥ 1.

This implies in particular that dim R̂ = dimR = 1, and that the maximal ideal of R̂ is

generated by the image in R̂ of a uniformizing parameter π of R, so that R̂ is in fact a
DVR as well. Note that

K̂ := Q(R̂) ' R̂(π) ' K ⊗R R̂.

Recall now that if v : K → Z is the discrete valuation corresponding to R, one has
for every r ∈ R, v(r) = max {i | r ∈ mi}.

Definition 1.8. Let 0 < α < 1. For every x ∈ K, define

|x| (= |x|v) := αv(x) for x 6= 0

and |0| = 0. This can be easily seen to be a non-archimedean norm, as in the special
case of | · |p above. Its corresponding distance function is d(x, y) = |x − y|, and one can
check that the associated topology is the m-adic topology described above (and hence
independent of the choice of α).

Exercise 1.9. Check that K̂ has a valuation and a non-archimedean norm extending
those on K, and that as such it is the completion of K with respect to the topology
induced by | · |.

Example 1.10. The main example of course is that of p-adic integers discussed in the
previous subsection. Concretely, fix a prime p, and take R = Z(p), the localization of Z in
the prime ideal generated by p. One has K = Q(Z(p)) ' Q, and

R̂ = lim
←−

i

Z(p)/p
iZ(p) ' lim

←−
i

Z/piZ = Zp and K̂ = Qp.

By taking α = 1/p, we obtain the p-adic absolute value | · |p defined before.

p-adic fields and rings of integers. We collect only a few properties necessary later
on for working with K-analytic manifolds.

Definition 1.11. A p-adic field K is a finite extension of Qp. The ring of integers OK ⊂ K
is the integral closure of Zp in K.

Lemma 1.12. We have the following:

(i) K = Q(OK).

(ii) K ' OK ⊗Zp Qp.
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(iii) OK is a DVR.

Proof. Take any x ∈ K. Since K is algebraic over Qp, one can easily check that there
is some a ∈ Zp such that ax ∈ OK . This implies that K = Q(OK), and in fact K =
Qp ⊗Zp OK , which proves (i) and (ii). For (iii), note first that clearly OK is normal,
while since Zp ⊂ OK is an integral extension and dimZp = 1, we also have dimOK = 1.
To conclude that OK is a DVR, it remains to show that it is local. Now every integral
extension of a DVR is a finite algebra over it, and therefore in our case OK is a finite
Zp-algebra. The assertion then follows from the following general statement: if (R,m) is
a complete local ring, and S is a finite R-algebra, then S is a local ring as well. This is a
well-known consequence of Hensel’s Lemma (explain). �

Given the Lemma, let vK : K → Z be the discrete valuation of K correponding
to OK . The ramification index of K over Qp is eK := vK(p); K is called unramified if
eK = 1, and otherwise ramified. We can define a non-archimedean norm on K extending
| · |p on Qp by

| · | = | · |p : K → Q, |x|p :=
1

pvK(x)/eK
for x 6= 0

and |0| = 0. We clearly have

OK = {x ∈ K | |x|p ≤ 1},

while the maximal ideal mK ⊂ OK is given by the condition |x|p < 1. As before, we
consider on K and OK the topology corresponding to this norm.

Proposition 1.13. Let K be a p-adic field, with the topology associated to | · |p. Then:

(i) As a Zp-module, OK is isomorphic to the free module Zd
p, where d := [K : Qp].

(ii) There exists a basis of open neighborhoods of 0 in OK given by {piOK}i≥1.

(iii) Fixing an isomorphism OK ' Zd
p, the topology on OK corresponds to the product

topology on Zd
p.

(iv) OK and K are complete topological spaces.

Proof. (i) The ring Zp is a PID (every ideal is generated by a power of p) and OK is a
torsion-free Zp-module. Since OK is finite over Zp, by the structure theorem for modules
over PID’s we get that OK is a free Zp-module, of finite rank equal to d = [K : Qp].

(ii) The topology given by | · |p coincides with the mK-adic topology, and so the family
{mi

K}i≥1 gives a basis of open neighborhoods of the origin. Now the statement follows by
observing that by the definition of ramification it follows that pOK = meK

K , so the mK-adic
topology and the pOK-adic topology on OK coincide.

(iii) Via such an isomorphism, the ideal pOK corresponds to the product of the ideals
pZp. Now by (ii) and the basic properties of Zp, the powers of these ideals on the two
sides give bases for the respective topologies.
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(iv) This follows immediately from (iii): since the topology on Zp is complete, so is the
product topology on Zd

p and hence that on OK . As every point in K has a neighborhood
homeomorphic to OK , this implies that K is complete as well. �

Remark 1.14. The reasoning in (i) and (ii) above can be made a bit more precise. On
one hand the quotient OK/pOK is free of rank d over Fp. On the other hand, it has a
filtration with successive quotients isomorphic to OK/mK , namely

(0) ⊂ meK−1
K /meK

K ⊂ · · · ⊂ mK/m
eK
K ⊂ OK/m

eK
K .

This implies that the residue fieldOK/mK is a finite extension of Fp of degree [K : Qp]/eK .

Proposition 1.15. A p-adic field K is locally compact, and its ring of integers OK is
compact.

Proof. Since OK is complete with respect to the topology given by | · |p, which is the same
as the mK-adic topology, we have

OK ' lim
←−

i

OK/m
i
K .

Now, as in any discrete valuation ring, we have

mn
K/m

n+1
K ' OK/mK .

(If mK = (πK), then the mapping is given by aπn
K 7→ a(mod mK).) Since OK/mK is a

finite field, the exact sequences

0 −→ mi−1
K /mi

K −→ OK/m
i
K −→ OK/m

i−1
K −→ 0.

imply inductively that all the rings OK/m
i
K are finite, and hence compact. The product∏∞

i=1OK/m
i
K is then compact, and so the closed subset lim

←−
i

OK/m
i
K is compact as well.

Now OK is open in K, so for every x ∈ K the set x +OK is a neighborhood of x which
is compact. �

Finally, let’s note the following fact, in analogy with the p-adic expansion of an
element in Qp. Let K be a p-adic field, and let πk be a uniformizing parameter for OK .
Recall that OK/mK ' Fq with q = p[K:Qp]/eK , and choose a system of representatives
S ⊂ OK for OK/mK (so a finite set of cardinality q, including 0). Then every element
x ∈ K admits a unique representation as a convergent Laurent series

x = amπ
m
K + am+1π

m+1
K + . . .

with ai ∈ S, am 6= 0, and m ∈ Z.

Remark 1.16. A p-adic field is a (not quite so) special example of the more general
notion of a local field (see [Ne] Ch.II §5). Most of the general aspects of the discussion
above can be extended to the setting of local fields.
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2. p-adic integration

Let G be a topological group, i.e. endowed with a topology which makes the group
operation G × G → G, (g, h) 7→ gh, and the inverse map G → G, g 7→ g−1, continuous.
If G is abelian2 and locally compact, it is well-known that it has a non-zero translation
invariant3 measure µ with a mild regularity property, which is unique up to scalars. This is
called the Haar measure. More precisely, a Haar measure is characterized by the following
integration properties:

• Any continuous function f : G→ C with compact support is µ-integrable.

• For any µ-integrable function f and any g ∈ G, one has∫
G

f(x)dµ =

∫
G

f(gx)dµ.

Other important properties of the Haar measure are as follows: every Borel subset of G
is µ-measurable, µ(A) > 0 for every nonempty open subset A of G , while A is compact
subset if and only if µ(A) is finite. For a thorough treatment, including a proof of existence
and uniqueness, see [RV] §1.2.

We use this in the p-adic setting (see for instance [Ig] §7.4 or [We1]). Let’s start with
the more down-to-earth case of Qp. Since Qp is locally compact, it has Haar measure µ,
which according to the discussion above can be normalized so that for the compact subring
Zp it satisfies

µ(Zp) = 1.

For any measurable function f : Qp → C, one can consider the integrals∫
Qp

fdµ and especially

∫
Zp

fdµ.

Here are some first examples of calculations.

Example 2.1. µ(pZp) = 1
p
.

Proof. Since Zp/pZp ' Fp, with a set of representatives 0, 1, . . . , p− 1, we have a disjoint
union decomposition

Zp = pZp ∪ (pZP + 1) ∪ . . . ∪ (pZP + p− 1).

By translation invariance, all of the sets on the right have the same measure, and since
µ(Zp) = 1, this immediately gives the result. �

Exercise 2.2. Show more generally that for every m ≥ 1 one has µ(pmZp) = 1
pm .

2This is not necessary, but otherwise we would have to speak separately of left and right invariant
measures.

3This means that for every measurable set A ⊂ G and any g ∈ G, one has µ(A) = µ(gA).
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A useful observation for calculating integrals is the following: the functions f :
Zp → C we will be dealing with have their image equal to a countable subset, say C ⊂ C.
Suppose we want to calculate the integral

∫
A
f(x)dµ, for some measurable set A. If

Af (c) := {x ∈ A | f(x) = c}
are the level sets of f in A, then∫

A

f(x)dµ =
∑
c∈C

∫
Af (c)

f(x)dµ =
∑
c∈C

c · µ(Af (c)).

For arbitrary functions f : Zp → C, the definition and calculation of the integral is of
course much more complicated.

Example 2.3. Let s ≥ 0 be a real number, and d ≥ 0 an integer. Then∫
Zp

|xd|sdµ =
p− 1

p− p−ds
.

Proof. We take advantage of the fact that in this context the function we are integrating
is the analogue of a step function, as in the comment above. We clearly have:

• |xd|s = 1 for x ∈ Zp − pZp.

• |xd|s = 1
pds for x ∈ pZp − p2Zp.

• |xd|s = 1
p2ds for x ∈ p2Zp − p3Zp.

and so on. Since these sets partition Zp we get∫
Zp

|xd|sdµ = 1 · µ(Zp − pZp) +
1

pds
· µ(pZp − p2Zp) +

1

p2ds
· µ(p2Zp − p3Zp) + . . .

Using the exercise above, this sum is equal to

1 ·
(

1− 1

p

)
+

1

pds
·
(

1

p
− 1

p2

)
+

1

p2ds
·
(

1

p2
− 1

p3

)
+ . . . =

=

(
1 +

1

pds+1
+

1

p2ds+2
+ . . .

)
− 1

p
·
(

1 +
1

pds+1
+

1

p2ds+2
+ . . .

)
=

=

(
1− 1

p

)
· 1

1− p−ds−1
=

p− 1

p− p−ds
.

�

Let now K be more generally any p-adic field, with ring of integers OK . Recall that
if mK = (πK) is the maximal ideal, then OK/mK ' Fq, where q = pr for some r > 0. Take
on K the topology dicussed in the previous section, namely that induced by the norm
| · |p extending the p-adic norm on Qp. We have seen that K is a (totally disconnected)
locally compact abelian topological group, hence we can consider a Haar measure µ on K.
According to the discussion above, since OK is compact we can normalize this measure
so that it satisfies

µ(OK) = 1.
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For any r ≥ 1, we can also consider the Haar measure on Kr with the product topology,
normalized such that µ(Or

K) = 1. We can integrate any measurable function f defined on
Kr, for instance f ∈ OK [X1, . . . , Xr].

Lemma 2.4. For every k ≥ 1, µ(mk
K) = 1

qk .

Proof. First note that we have a disjoint union

OK =
⋃
s∈S

(mK + s) ,

where S is a set of representatives in OK for OK/mK ' Fq. By translation invariance,
this immediately implies that µ(mk) = 1/q. By a completely similar argument we see that

µ(mk) =
1

|OK/mk
K |
.

Now a simple filtration argument as in the previous subsection shows that

|OK/m
k
K | = |mk−1

K /mk
K | · . . . · |mK/m

2
K | · |OK/mK | = qk.

The last equality follows since for each i we have mi−1
K /mi

K ' OK/mK . �

Exercise 2.5. Show that µ(O∗K) = 1− 1
q
.

Exercise 2.6. Show that for any non-negative integers k1, . . . , kr, one has

µ(mk1
K × . . .×mkr

K ) =
1

qk1+...+kr
.

Exercise 2.7. Let s ≥ 0 be a real number, and d ≥ 0 an integer. Then∫
OK

|xd|sdµ =
q − 1

q − q−ds
.

More generally, for any non-negative integers k1, . . . , kr,∫
Or

K

|xk1
1 · . . . · xkr

r |sdµ =
r∏

i=1

q − 1

q − q−kis
.

(Hint: Fubini’s formula holds for p-adic integrals.)

Remark 2.8. (1) The computations above still work if one takes s ∈ C, imposing the
condition Re(s) > −1.

(2) What makes an integral as above easy to compute is the fact that the integrand is a
monomial in the variables, i.e. it involves only multiplication (for which we have the norm
formula |xy| = |x||y|). As soon as addition appears in the integrand, things become a lot
more complicated, partly due to the absence of a formula for |x + y|. Here is a typical
example:

Exercise 2.9 (Challenge; cf. [duS]). For s ≥ 0, compute the integral∫
Z2

p

|xy(x+ y)|sdµ.
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Definition 2.10. Let f ∈ OK [X1, . . . , Xr] (or more generally any K-analytic function as
defined below), and let s ∈ C. The (local) zeta function of f is

Z(f, s) :=

∫
Or

K

|f(x)|sdµ.

It is a holomorphic function of s for Re(s) > 0 (exercise). (This is a special example of a
more general type of zeta functions introduced in [We1].)

3. Integration on K-analytic manifolds

K-analytic functions and manifolds. In this section, besides Igusa’s book [Ig], I am
benefitting from lecture notes of Lazarsfeld [La]. Let K be a p-adic field, and r > 0 an
integer. For any open set U ⊂ Kr, a K-analytic function f : U → K is a function which
is locally around any point in U given by a convergent power series. Such a function can
be seen in a standard fashion to be differentiable, with all partial derivatives again K-
analytic functions (see [Ig] Ch.2). We call f = (f1, . . . , fm) : U → Km a K-analytic map
if all fi are K-analytic functions.

Definition 3.1 (K-analytic manifold). Let X be a Haussdorff topological space, and
n ≥ 0 an integer. A chart of X is a pair (U,ϕU) consisting of an open subset of X
together with a homeomorphism ϕU : U → V onto an open set V ⊂ Kn. An atlas is a
family of charts {(U,ϕU)} such that for every U1, U2 with U1 ∩ U2 6= ∅ the composition

ϕU2 ◦ ϕ−1
U1

: ϕU1(U1 ∩ U2) → ϕU2(U1 ∩ U2)

is bi-analytic. Two atlases are equivalent if their union is also an atlas. Finally, X together
with an equivalence class of atlases as above is called a K-analytic manifold of dimension
n. If we vary x around a point x0 ∈ U , where U is an open set underlying a chart,
then ϕU(x) = (x1, . . . , xn) is called a system of coordinates around x0. K-analytic maps
between manifolds X and Y are defined in the obvious way.

From the similar properties of K (and hence Kr) we get:

Lemma 3.2. A K-analytic manifold is a locally compact, totally disconnected topological
space.

Example 3.3. (1) Every open set U ⊂ Kn is a K-analytic manifold.

(2) X = On
K ⊂ Kn is a compact K-analytic manifold; note that it is a manifold since it

is an open subset of Kn.

(3) Consider the projective line P1 over K, with homogeneous coordinates (x : y). This
is covered by two disjoint compact open sets (sic!), namely

U := {(x : y) | |x/y| ≤ 1} and V := {(x : y) | |y/x| < 1}.

We have bi-analytic maps

U → OK , (x : y) 7→ x/y and V → mK 'homeo OK , (x : y) 7→ y/x.
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(4) Let π : Bl0(K
2) → K2 be the blow-up of the origin in the affine plane over K, naturally

defined inside K2 ×P1. Let

X = O2
K ⊂ K2 and Y = π−1(X),

both compact K-analytic manifolds. Recall that Bl0(K
2) is covered by two copies of K2,

mapping to the base K2 via the rules

K2 → K2 (s, t) 7→ (s, st) and K2 → K2 (u, v) 7→ (uv, u).

We can then express Y as the disjoint union of the compact open sets

U = {(s, t) | |s| ≤ 1, |t| ≤ 1} and V = {(u, v) | |u| < 1, |v| ≤ 1},
by noting that

π(U) = {(x, y) | |y| ≤ |x| ≤ 1} and π(V ) = {(x, y) | |x| < |y| ≤ 1} ∪ {(0, 0)}.

What we saw in the examples above is a general fact:

Exercise 3.4. Every compact K-analytic manifold of dimension n is bi-analytic to a
finite disjoint union of copies of On

K .

Differential forms and measure. If X is an n-dimensional K-analytic manifold, we
can define differential forms in the usual way. Locally on an open set U with coordinates
x1, . . . , xn, a form of degree k can be written as

(2) ν =
∑

i1<...<ik

fi1,...,ik dxi1 ∧ . . . ∧ dxik ,

with fi1,...,ik K-valued functions on U . If these functions are K-analytic, then ν is a K-
analytic differential form.

We will be particularly interested in forms of top degree n, and the measure they
define. Let ω be such a K-analytic form on X. The associated measure µω = |ω| on X is
defined as follows. Let’s assume first that X is a local πp1

KOK × . . .×πpn

K OK , on which (2)
holds globally. For any compact-open polycylinder

A ' (x1 + πk1
KOK)× . . .× (xr + πkn

K OK) ⊂ X

we set

µω(A) :=

∫
A

|f(x)|dµ,

where µ is the usual normalized Haar measure. This is easily checked to define a Borel
measure on X.

To define the measure µω on a globalX, we need to check that it transforms precisely
like differential forms when changing coordinates.

Theorem 3.5 (Change of variables formula, I). Let ϕ = (ϕ1, . . . , ϕn) : Kn → Kn be a

K-analytic map. Suppose x ∈ Kn is a point where det
(

∂ϕi

∂xj
(x)

)
6= 0. Then ϕ restricts to

a bi-analytic isomorphism

ϕ : U ⊂ Kn '−→ V ⊂ Kn
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with U a neighborhood of x and V a neighborhood of ϕ(x), and µV
Haar =

∣∣∣det
(

∂ϕi

∂xj
(x)

)∣∣∣
K
·

µU
Haar, which means that for every measurable set A ⊂ U one has∫

ϕ(A)

dµV
Haar =

∫
A

∣∣∣∣det

(
∂ϕi

∂xj

(x)

)∣∣∣∣
K

· dµU
Haar.

Here is just a brief sketch of the proof (for more details see [Ig] §7.4). The essential
point is to treat the case when ϕ is given by multiplication by an invertible matrix M .
For this in turn the essential case is that of a diagonal matrix M = diag(πk1

K , . . . , π
kn
K ).

This maps the polydisk On
K , of measure 1, to πk1

KOK × . . .× πkn
K OK , of measure 1

qk1+...+kn ;

on the other hand |det(M)| = 1
qk1+...+kn , since |πK | = 1

q
.

Remark 3.6. Let’s change notation slightly in order to make this look more familiar:
denote |dx| = |dx1 ∧ . . .∧ dxn| and |dy| = |dy1 ∧ . . .∧ dyn| the Haar measure on U and V
respectively. Then the Theorem says that for A ⊂ U measurable,∫

ϕ(A)

|dy| =
∫

A

|ϕ∗dy| =
∫

A

|det(Jac(ϕ))| · |dx|.

Putting together all of the above, we obtain

Corollary 3.7. Let X be a compact K-analytic manifold, and ω a K-analytic n-form on
X. Then there exists a globally defined measure µω on X. In particular, for any continuous
function f : X → C, the integral

∫
X
f(x)dµω is well-defined.

Proof. By Exercise 3.4, we can cover X by finitely many disjoint compact open subsets U
on which ω = f(x)dx1∧ . . .∧dxn. But by Theorem 3.5, µω is independent of the particular
choice of coordinates, hence it gives a globally defined measure. �

Since removing sets of measure 0 does not affect integrals, Theorem 3.5 immediately
implies the following slightly more general statement.

Theorem 3.8 (Change of variables formula, II). Let ϕ : Y → X be a K-analytic map
of compact K-analytic manifolds. Assume that ϕ is bi-analytic away from closed subsets
Z ⊂ Y and ϕ(Z) ⊂ X of measure 0. If ω is a K-analytic n-form on X and f is a
K-analytic function on X, then∫

X

|f |sdµω =

∫
Y

|f ◦ ϕ|sdµϕ∗ω.

Example 3.9. Let π : Y = Bl0(O2
K) → X = O2

K be the blow-up of the origin. Recall
that in Exercise 2.7 we’ve computed

(3)

∫
X

|xayb|w|dx ∧ dy| = 1

1− q−wa−1
· 1

1− q−wb−1
·
(
q − 1

q

)2

.

We verify the change of variables formula on the blow-up Y . We know from Example 3.3
(4) that Y is covered by two disjoint polydisks Y = U ∪ V with

U = {(s, t) | |s| ≤ 1, |t| ≤ 1} and V = {(u, v) | |u| < 1, |v| ≤ 1}
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with maps to X given by

(s, t) 7→ (s, st) and (u, v) 7→ (uv, u).

This means that

π∗(dx ∧ dy) = sds ∧ dt on U and π∗(dx ∧ dy) = vdu ∧ dv on V.

while on the other hand

|π∗f |s = |sa+b|w|tb|w on U and |π∗f |s = |ua|w|va+b|w on V.

This gives∫
Y

|π∗f |w·|π∗(dx∧dy)| =
∫
|s|≤1,|t|≤1

|s|w(a+b)+1|t|wbds∧dt+

∫
|u|≤ 1

q
,|v|≤1

|u|wa|t|w(a+b)+1du∧dv.

We now use result similar to Exercise 2.7, namely

Exercise 3.10. For every non-negative integer m and any c,∫
|x|≤ 1

qm

|x|c|dx| = q−m(c+1)

1− q−(c+1)
· q − 1

q
.

Given this formula, we can write the integral above as(
q − 1

q

)2 (
1

(1− q−w(a+b)−2)(1− q−wb−1)
+

1

(1− q−wa−1)(1− q−w(a+b)−2)

)
and a simple calculation leads to the same formula as (3).

Resolution of singularities. We start with an example. Generalizing a previous exercise,
given integers a, b, c let’s consider the integral

I :=

∫
X=O2

K

|f(x, y)|w|dx ∧ dy|, with f(x, y) = xayb(x− y)c.

Given the change of variables formula, and the fact that integrals of monomial functions
are much easier to compute, a natural idea is to pass to a birational model of X on which
the function f can be brought to a monomial form. In this particular case, fortunately
one needs to consider only the blow-up π : Y → X at the origin. Recall yet again that Y
is covered by two disjoint polydisks Y = U ∪ V with

U = {(s, t) | |s| ≤ 1, |t| ≤ 1} and V = {(u, v) | |u| < 1, |v| ≤ 1}
with maps to X given by

(s, t) 7→ (s, st) and (u, v) 7→ (uv, u).

Consider now

IU :=

∫
U

|π∗f ||π∗(dx ∧ dy)|.

A simple calculation shows that on U we have

(π∗f)(s, t) = sa+b+ctb(1− t)c and π∗(dx ∧ dy) = sds ∧ dt,
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which gives

IU =

∫
U

|sa+b+c+1tb(1− t)c|s|ds ∧ dt| =

=

(∫
|s|≤1

|sa+b+c+1|w|ds|
)
·
(∫
|t|≤1

|tb|w|(1− t)c|w|dt|
)
.

We have already seen the calculation of the first integral in the product a few times.
For the second integral, let’s choose a set S = {α1 = 0, α2 = 1, α3, . . . , αq} ⊂ OK of
representatives for OK/mK ' Fq. We can then split the region {|t| ≤ 1} as a disjoint
union

{|t| ≤ 1} = T1 ∪ . . . ∪ Tq, Ti := {|t− αi| ≤
1

q
},

so that if we denote g(t) = tb(1− t)c, we have∫
|t|≤1

|g(t)|w|dt| =
∫

T1

|g(t)|w|dt|+ . . .+

∫
Tq

|g(t)|w|dt|.

The point is that each of the integrals in the sum on the right can now be computed as
a “monomial” integral. For instance, note that the condition |t| ≤ 1

q
defining T1 implies

that |t− 1| = 1, so that ∫
T1

|g(t)|w|dt| =
∫

T1

|tb|w|dt|,

which we know how to compute. Similarly, the condition defining T2 implies |t| = 1, so
that ∫

T2

|g(t)|w|dt| =
∫
|t−1|≤ 1

q

|(t− 1)c|w|dt|,

which again we know how to compute after making the change of variables t′ = t − 1.
The same thing can be done for all the other Ti’s, which means that we can complete the
calculation of IU via only monomial computations. One can similarly define IV and deal
with it in an analogous fashion, while finally by the change of variables formula and the
decomposition of Y we have I = IU + IV .

Exercise 3.11. Complete all the details of the calculation above to find a formula for I.

What happened here? Geometrically, by blowing up the origin in O2
K , we “resolved

the singularities” of the curve f(x, y) = 0. (Draw the picture.) The essential point is
that on Bl0(O2

K), the function π∗f is locally monomial. Hironaka’s famous theorem on
resolution of singularities says that we can always do this. Let’s recall first the better
known version over C, restricting only to the case of hypersurfaces in affine space.

Theorem 3.12 (Resolution of singularities over C). Let X = Cn, and let f ∈ C[X1, . . . , Xn]
be a non-constant polynomial. Then there exists a complex manifold Y and a proper sur-
jective map π : Y → X such that the divisor

div(π∗f) + div(π∗(dx1 ∧ . . . ∧ dxn))

has simple normal crossings support.
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Remark 3.13. Let’s recall and expand a bit the terminology in the Theorem. A simple
normal crossings divisor on X is an effective divisor D =

∑k
i=1 Fi such that each Fi is a

non-singular codimension 1 subvariety of X, and in the neighborhood of each point, D is
defined in local coordinates x1, . . . , xn by the equation x1 · . . . · xk = 0. The conclusion of
the Theorem is that one can write

div(π∗f) =
k∑

i=1

aiFi and div(π∗(dx1 ∧ . . . ∧ dxn)) =
k∑

i=1

biFi

for some integers ai, bi, i ∈ {1, . . . , k}, with
∑k

i=1 Fi having simple normal crossings sup-
port. A mapping π as in the statement is called an embedded resolution of singularities
of the hypersurface (f = 0). The integers ai, bi are important invariants of the resolution,
called discrepancies.

Example 3.14. Let f(x, y) = y2−x3, i.e. the equation defining a cusp in C2. Its embedded
resolution is one of the best known examples of this procedure. In order to get to a simple
normal crossings divisor, we have to blow-up the origin three successive times, keeping
track of multiplicities; for the geometric picture, see [Ha] Example 3.9.1. If Y → C2 is the
composition of the three blow-ups, denoting by C the proper transform of (f = 0), and
by E1, E2, E3 the three exceptional divisors in Y (coming from the succesive blow-ups, in
this order), we have

div(π∗f) = C + 2E1 + 3E2 + 6E3

and
KY/C2 = div(π∗(dx ∧ dy)) = E1 + 2E2 + 4E3.

Exercise 3.15. Complete the details of the calculation.

Since we’re at this, let’s record a few more things about general birational maps
between smooth complex varieties. Let π : Y → X be a birational map (not necessarily
proper) between two such varieties of dimension n. A key point to note is that while we
cannot talk about canonically defined divisors KX and KY , there is a canonically defined
relative canonical divisor KY/X , namely the zero locus of the Jacobian of the map π.
This supported on the exceptional locus of π: if Ei are the exceptional divisors of π, with
1 ≤ i ≤ k, then there exist positive integers aEi

such that

(4) KY/X := Z(Jac(π)) =
k∑

i=1

aEi
· Ei.

Let’s make this explicit. Fix an exceptional divisor E for π, and consider Z = f(E) ⊂ X,
with codimXZ = c ≥ 2. Let y ∈ E be a general point, and x = f(y) ∈ Z. Since these
are smooth points, we can then choose systems of coordinates y1, . . . , yn around y, and
x1, . . . , xn around x, such that E = (y1 = 0) and Z = (x1 = . . . = xc = 0). Then for each
1 ≤ i ≤ c there exist integers ki ≥ 1 such that

π∗xi = yki
i · ψi,

with ψi an analytic function which is invertible at y. Noting that

π∗dxi = kiψi · yki−1
i · dyi + dψi · yki

i ,
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this gives
π∗(dx1 ∧ . . . ∧ dxn) = yaE

1 · (unit) · (dy1 ∧ . . . ∧ dyn),

with aE = (
∑c

i=1 ki) − 1. In other words, locally around a general point of E we have
KY/X = aE · E. Globalizing this to include all exceptional divisors of π we get (4). Note
also that for every effective divisor D ⊂ X we have

π∗D = D̃ +
k∑

i=1

bi · Ei,

where D̃ is the proper transform of D, and bi are non-negative integers.

Going back to the K-analytic picture, for our present purposes the important fact is
that a statement completely analogous to Theorem 3.12 holds for K-analytic manifolds.

Theorem 3.16 (K-analytic resolution of singularities). Let K be a p-adic field, X = Kn,
and f ∈ K[X1, . . . , Xn] a non-constant polynomial. Then there exists an n-dimensional
K-analytic manifold Y , a proper surjective K-analytic map π : Y → X which is an
isomorphism outside a set of measure 0, and finitely many submanifolds F1, . . . , Fk of Y
of codimension 1, such that the following hold:

• the divisor
∑k

i=1 Fi has simple normal crossings support.

• div(π∗f) =
∑k

i=1 aiFi for some non-negative integers a1, . . . , ak.

• div(π∗(dx1 ∧ . . . ∧ dxn)) =
∑k

i=1 biFi for some non-negative integers b1, . . . , bk.

In terms of equations, this means that in suitable coordinates y = (y1, . . . , yn) around
any point y ∈ Y we have

π∗f = µ(y) · ya1
1 · . . . · yan

n

and
π∗(dx1 ∧ . . . ∧ dxn) = ν(y) · yb1

1 · . . . · ybn
n · (dy1 ∧ . . . ∧ dyn)

with µ(0) 6= 0 and ν(0) 6= 0.

Roughly speaking, the Theorem follows from the usual version: by Theorem 3.12,
there exists a smooth algebraic variety Z defined over K a morphism π : Z → An

K which
is an embedded resolution of (f = 0). One takes Y = Z(K).

4. Igusa’s theorem on the rationality of the zeta function

In this section we prove a theorem of Igusa which was one of the first important
applications of the theory of p-adic integration. The number theoretic set-up is as follows:
fix a prime p, and let f ∈ Zp[X1, . . . , Xn] (for instance f ∈ Z[X1 . . . , Xn]). For any integer
m ≥ 0, define

Nm := |{x ∈ (Z/pmZ)n | f(mod pm)(x) = 0}|,
with the convention N0 = 1. Consider the Poincaré series

Q(f, t) :=
∞∑

m=0

Nm · tm.
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The following result was conjectured by Borevich and Shafarevich [BS] and proved by
Igusa (see e.g. §8.2).

Theorem 4.1. Q(f, t) is a rational function.

A more general statement appears in Theorem 4.4, and a more precise statement
appears in Theorem 4.8 below. Let’s start by looking at some examples.

Example 4.2. (1) Take f(x) = x. Then x ≡ 0 (mod pm) has precisely one solution, so
Nm = 1 for all m. Then

Q(f, t) = 1 + t+ t2 + . . . =
1

1− t
.

(2) Take f(x) = x2. Then Nm is the number of solutions of x2 ≡ 0 (mod pm):

• For m = 1, we have p|x2 iff p|x, so N1 = 1.

• For m = 2, we have p2|x2 iff p|x, so N2 = p.

• For m = 3, we have p3|x2 iff p2|x, so N3 = p.

• For m = 4, we have p4|x2 iff p2|x, so N4 = p2.

• For m = 5, we have p5|x2 iff p3|x, so N5 = p3.

The pattern is now clear. We have

Q(f, t) = 1 + t+ pt2 + pt3 + p2t4 + p2t5 + . . . =

= (1 + t)(1 + pt2 + p2t4 + . . .) =
1 + t

1− pt2
.

(3) Take f(x, y) = y − x2. Fixing an arbitrary x, the congruence y ≡ x2 (mod pm)
determines y, so we easily get Nm = pm for each m. We have

Q(f, t) = 1 + pt+ p2t2 + p3t3 + . . . =
1

1− pt
.

Exercise 4.3. (1) Compute Q(f, t) for f(x) = xd with d ≥ 3.

(2) Challenge: compute Q(f, t) for f(x, y) = y2 − x3.

(2) Challenge: compute Q(f, t) for f(x1, . . . , xn) = xd1
1 · . . . ·xdn

n with n ≥ 1 and d1, . . . , dn

arbitrary positive integers. Start with some small cases, like x · y, etc.

Theorem 4.1 can be proved in the more general context of arbitrary p-adic fields.
Consider such a field K, with ring of integers OK , such that OK/mK ' Fq, q = pr. Let
f ∈ OK [X1, . . . , Xn], and for any m ≥ 0 define

Nm := |{x ∈ (OK/m
m
K)n | f(mod mm

K)(x) = 0}|,
with the convention N0 = 1. Define as before the Poincaré series of f to be

Q(f, t) :=
∞∑

m=0

Nm · tm.
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Theorem 4.4 ([Ig] §8.2). Q(f, t) is a rational function.

The key idea in Igusa’s approach to Theorem 4.4 is to relate Q(f, t) to a p-adic
integral via the following:

Proposition 4.5. With the notation above, we have

Z(f, s) = Q

(
f,

1

qn+s

)
(1− qs) + qs.

Proof. For every m ≥ 0, consider the subset of On
K given by

Vm := {x ∈ On
K | |f(x)| ≤ 1

qm
},

so that Vm − Vm+1 are the level sets of f . In Lemma 4.6 below we will show that

µ(Vm) = Nm · 1

qnm
.

Assuming this, and decomposing the domain into the disjoint union of these level sets,
we have

Z(f, s) =

∫
On

K

|f(x)|sdµ =

= 1 · (µ(V0)− µ(V1)) +
1

qs
· (µ(V1)− µ(V2)) +

1

q2s
· (µ(V2)− µ(V3)) + . . . =

= 1 ·
(

1−N1 ·
1

qn

)
+

1

qs
·
(
N1 ·

1

qn
−N2 ·

1

q2n

)
+

1

q2s
·
(
N2 ·

1

q2n
−N3 ·

1

q3n

)
+ . . . =

=

(
1 +N1 ·

1

qn+s
+N2 ·

1

q2(n+s)
+ . . .

)
− qs ·

(
N1 ·

1

qn+s
+N2 ·

1

q2(n+s)
+ . . .

)
=

= Q

(
f,

1

qn+s

)
− qs ·

(
Q

(
f,

1

qn+s

)
− 1

)
.

�

Lemma 4.6. With the notation in the proof of Proposition 4.5, we have µ(Vm) = Nm · 1
qnm .

Proof. Note that Vm is the preimage in On
K of the subset

{x | f(mod mm
K)(x) = 0} ⊂ (OK/m

m
K)n .

But this is a disjoint union of Nm translates of the kernel of the natural mapping On
K →

(OK/m
m
K)n, i.e. a disjoint union of translates of (mm

K)n, from which the result follows using
Lemma 2.4. �

Example 4.7. Let’s verify the statement of Proposition 4.5 in the case of f(x) = xd for
some positive integer d. We have seen before that

Z(f, s) =
q − 1

q − q−ds
.
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Rewriting this in terms of t = q−s, we have

Z(f, t) =
q − 1

q − td
.

By the theorem we then have

Q(f, t) =

(
Z(f, qt)− 1

qt

)
·
(

qt

qt− 1

)
=

qt− t− 1 + qd−1td

(1− qd−1td)(qt− 1)
.

This agrees with the examples above for d = 1, 2 (and also tells you what the answer
should be in Exercise 4.3(1)).

Using the substitution t = q−s, the result in Proposition 4.5 can be rewritten as

Q(f, q−nt) =
tZ(f, s)− 1

t− 1
.

A more precise version of Theorem 4.4 is then given by the following:

Theorem 4.8. Let K be a p-adic field, and f ∈ OK [X1, . . . , Xn]. Then the zeta function

Z(f, s) =

∫
OK

|f |sdµ

is a rational function of q−s. Moreover, let (a1, b1), . . . , (ak, bk) be the discrepancies asso-
ciated to an embedded resolution of singularities of (f = 0) (as in Remark 3.13). Then

Z(f, s) =
P (q−s)

(1− q−a1s−b1−1) · . . . · (1− q−aks−bk−1)
,

where P ∈ Z[1/q][X]. Consequently, the poles of Z(f, s) occur among the values − b1+1
a1
, . . . ,− bk+1

ak
.

Proof. Let π : V → Kn be an embedded resolution of singularities of (f = 0), and let
X = On

K ⊂ Kn and Y = π−1(X), so that we get a restriction π : Y → X. We’ve seen that
Y is a compact K-analytic manifold which is covered by disjoint compact open charts Ui

on which in coordinates we have

π∗f = µ(y) · ya1
1 · . . . · yan

n

and
π∗(dx1 ∧ . . . ∧ dxn) = ν(y) · yb1

1 · . . . · ybn
n · (dy1 ∧ . . . ∧ dyn)

with µ(y) 6= 0 and ν(y) 6= 0 for all y ∈ Ui. By the change of variables formula, we have

Z(f, s) =
∑

i

∫
Ui

|µ(y)|s|ν(y)||y1|a1s+b1 · . . . · |yn|ans+bn|dy1 ∧ . . . ∧ dyn|.

Note now that the functions |µ(y)| and |ν(y)| are locally constant on each Ui. By shrinking
the Ui, we can then assume that they are in fact constant, say

|µ| = q−a and |ν| = q−b.

Since Ui can be identified with a polydisk Pi given by |yi| ≤ q−ki for all i, we obtain that
Z(f, s) is a sum of terms of the form

q−as−b ·
∫

Pi

|y1|a1s+b1 · . . . · |yn|ans+bn|dy1 ∧ . . . ∧ dyn| =
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= q−as−b ·
∫
|y1|≤q−k1

|y1|a1s+b1|dy1| · . . . ·
∫
|yn|≤q−kn

|yn|ans+bn|dyn| =

= q−as−b ·
(
q − 1

q

)n

· q−k1(a1s+b1+1)

1− q−(a1s+b1+1)
· . . . · q−kn(ans+bn+1)

1− q−(ans+bn+1)
,

where we use Exercise 3.10 for the last line. So the statement follows if we check that no
extra poles can arise from the term involving q−as (note that a and b can be negative). To
this end, note that (f ◦ π)(Pi) ⊂ OK , so that |π∗f | ≤ 1 on Pi. This means that for every
y ∈ Pi we have

|µ(y)| · |y1|a1 · . . . · |yn|an ≤ 1.

This is equivalent to

q−a−k1a1−...−knan ≤ 1, i.e. a+ k1a1 + . . .+ knan ≥ 0,

so indeed q−s appears with a non-negative power in the numerator of the expression
above. �

Remark 4.9 (Monodromy conjecture). Going back to the statement of Theorem 4.8, most
of the time the poles of the local zeta function do not account for all the values − bi+1

ai

(at an even more basic level, some of these values are not invariant with respect to the
choice of embedded resolution). A deeper conjecture due to Igusa, called the monodromy
conjecture, aims to identify these poles more precisely.

Here is a brief explanation. Consider f as a mapping f : Cn → C, and fix a point
x ∈ f−1(0). The Milnor fiber of f at x is

Mf,x := f−1(t) ∩Bε(x),

where Bε(x) is the ball of radius ε around x, and 0 < t� ε� 1. It was shown by Milnor
that as a C∞ manifold Mf,x does not depend on t and ε. Each lifting of a path in a small
disk of radius t around 0 ∈ C induces a diffeomorphism Mf,x → Mf,x, whose action on
the cohomology H i(Mf,x,C) for each i is called the monodromy action.

Conjecture 4.10 (Igusa’s Monodromy Conjecture). Let s be a pole of Z(f, s). Then
e2πis is an eigenvalue of the monodromy action on some H i(Mf,x,C) at some point of
x ∈ f−1(0).

This truly remarkable conjecture, known in only a few cases, relates number theoretic
invariants of f ∈ Z[X1, . . . , Xn] to differential topological invariants of the corresponding
function f : Cn → C. An even stronger conjecture relates the poles of Z(f, s) to the roots
of the so-called Bernstein-Sato polynomial of f .

5. Weil’s measure and the relationship with rational points over finite
fields

Let K be a p-adic field, with ring of integers OK , and residue field OK/mK ' Fq.
In the next chapter we will need a result of Weil, roughly speaking relating the p-adic
volume of a K-analytic manifold to the number of points of the manifold over Fq.



20 Mihnea Popa

Let X be a scheme over S = Spec OK , flat of relative dimension n. Recall that
the set of OK-points of X is the set X (OK) of sections of the morphism X → S. We
can also consider the set X (K) of K-points of X , i.e. sections of the induced XK :=
X ×S Spec K → Spec K.

Exercise 5.1. (1) If X is an affine S-scheme, then

X (OK) = {x ∈ X (K) | f(x) ∈ OK for all f ∈ Γ(X ,OX )} ⊂ X (K).

(2) If X is proper over S, then X (OK) = X (K). (Hint: use the valuative criterion for
properness.)

Definition 5.2. Assume that X is smooth over S. A gauge form on X is a global section
ω ∈ Γ(X ,Ωn

X/S) which does not vanish anywhere on X . Note that such a form exists if
and only if Ωn

X/S is trivial; more precisely, we have an isomorphism

OX → Ωn
X/S, 1 7→ ω.

(Therefore gauge forms always exist locally on X .)

Weil’s p-adic measure. We saw in §3 that if ω is a K-analytic n-form on X (K), one can
associate to it a measure µω. In a completely similar way, one can associate a measure µω

on X (OK) to any n-form ω ∈ Γ(X ,Ωn
X/S). (Note that X (OK) is a compact space in the

p-adic topology.) Although not important for our discussion here, following the arguments
below one can see that when ω is a gauge form, the measure µω can in fact be defined
over the entire X (K). This is called the Weil p-adic measure associated to ω.

Theorem 5.3 (Weil, [We2] 2.25). Let X be a smooth scheme over S of relative dimension
n, and let ω be a gauge form on X , with associated Weil p-adic measure µω. Then∫

X (OK)

dµω =
|X (Fq)|
qn

.

Proof. This is really just a globalization of the argument in Lemma 4.6. Consider the
reduction modulo mK map

ϕ : X (OK) −→ X (Fq), x 7→ x̄.

It is enough to show that for every x̄ ∈ X (Fq), one has∫
ϕ−1(x̄)

dµω =
1

qn
.

This follows from the following two observations. On one hand, we have a K-analytic
isomorphism ϕ−1(x̄) ' mn

K , since locally the mapping ϕ looks like On
K → (OK/mK)n. On

the other hand, if we write in local coordinates ω = f(x) · dx1 ∧ . . . ∧ dxn, by virtue of
the fact that ω is a gauge form we have that f(x) is a p-adic unit for every x, so that
|f(x)| = 1. This facts combined give∫

ϕ−1(x̄)

dµω =

∫
mn

K

|dx1 ∧ . . . ∧ dxn| = µ(mn
K) =

1

qn
.

�
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Canonical measure. Let again X be a smooth scheme over S, this time not necessarily
endowed with a gauge form. One can nevertheless naturally produce a measure on X (OK)
(but not necessarily on X (K) if X is not proper over S) by gluing local measures given
by gauge forms.

Consider a finite cover U1, . . . , Uk of X by Zariski open S-schemes such that for
each i the line bundle Ωn

X/S is trivial over Ui, i.e. Ωn
X/S |Ui

' OUi
. This means that we can

pick a gauge form ωi on each Ui, with associated Weil measure µωi
defined on X (K) as

above. Consider its restriction to X (OK). Now any two gauge forms clearly differ by an
invertible function, i.e. by a section si ∈ Γ(Ui,O∗Ui

), so that for any OK-point x ∈ Ui we
have |si(x)| = 1. Recalling how the measure associated to an n-form is defined in §3, this
has the following consequences:

• The Weil measure µωi
on Ui(OK) does not depend on the choice of gauge form.

• These measures glue together to a global measure µcan on the compact X (OK), called
the canonical measure.

Weil’s result Theorem 5.3 continues to hold in this setting.

Corollary 5.4. Let X be a smooth scheme over S of relative dimension n. Then∫
X (OK)

dµcan =
|X (Fq)|
qn

.

Proof. Consider a Zariski-open covering U1, . . . , Uk of X as above, such that one has gauge
forms on each Ui. Since µcan is obtained by gluing the local Weil measures, we have∫
X (OK)

dµcan =
∑

i

∫
Ui(OK)

dµcan −
∑
i<j

∫
(Ui∩Uj)(OK)

dµcan +. . .+ (−1)k

∫
(U1∩...∩Uk)(OK)

dµcan.

Now for each of these integrals one can apply Theorem 5.3. The result follows by noting
that by the inclusion-exclusion principle one has

|X (Fq)| =
∑

i

|Ui(Fq)| −
∑
i<j

|(Ui ∩ Uj)(Fq)|+ . . .+ (−1)k|(U1 ∩ . . . ∩ Uk)(Fq)|.

�

Let’s conclude by noting a useful technical result which essentially says that proper
Zariski closed subsets are irrelevant for the calculation of integrals with respect to the
canonical measure.

Proposition 5.5. Let X be a smooth scheme over S, and let Y be a reduced closed S-
subscheme of codimension ≥ 1. Then Y(OK) has measure zero in X (OK) with respect to
the canonical measure µcan.

Proof. Using an affine open cover of X , we can immediately reduce to the case when
X is a smooth affine S-scheme. Considering some hypersurface containing Y , we can
also reduce to the case of a principal divisor, i.e. Y = (f = 0) with f ∈ Γ(X ,OX )
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irreducible. By the Noether normalization theorem, we can then further assume that
X = An

OK
= Spec OK [X1, . . . , Xn] and f = X1.

4

To show that µcan(Y(OK)) = 0, we will use a limit argument. Define for every integer
m ≥ 1 the subsets of An(OK)

Ym(OK) := {(x1, . . . , xn) ∈ On
K | x1 ∈ mm

K}.
Noting that ∩∞m=1m

m
K = 0, we have

Y(OK) =
∞⋂

m=1

Ym(OK).

It suffices then to show ∫
Y(OK)

dµcan = lim
m→∞

∫
Ym(OK)

dµcan = 0.

But each one of the terms in the limit can be easily computed using Fubini:∫
Ym(OK)

dµcan =

∫
mm

K

|dx1| ·
n∏

i=2

∫
OK

|dxi| =
1

qm
,

hence the limit is indeed equal to zero. �
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